ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine the spheroid growth and star formation quenching experienced by galaxies from z~3 to the present by studying the evolution with redshift of the quiescent and spheroid-dominated fractions of galaxies from the CANDELS and GAMA surveys. We co mpare the observed fractions with predictions from a semi-analytic model which includes prescriptions for bulge growth and AGN feedback due to mergers and disk instabilities. We facilitate direct morphological comparison by converting our model bulge-to-total stellar mass ratios to Sersic indices. We then subdivide our population into the four quadrants of the sSFR-Sersic index plane and study the buildup of each of these subpopulations. We find that the fraction of star forming disks declines steadily, while the fraction of quiescent spheroids builds up over cosmic time. The fractions of star forming spheroids and quiescent disks are both non-negligible, and stay nearly constant over the period we have studied, at about 10% and 15-20% respectively. Our model is qualitatively successful at reproducing the evolution of the two main populations (star forming disk-dominated galaxies and quiescent spheroid-dominated galaxies), and approximately reproduces the relative fractions of all four types, but predicts a stronger decline in star forming spheroids, and increase in quiescent disks, than seen in the observations. A model with an additional channel for bulge growth via disk instabilities agrees better overall with the observations than a model in which bulges may grow only through mergers. We study evolutionary tracks of some individual galaxies as they experience morphological transformation and quenching, and examine the importance of different physical drivers of this transformation (major and minor mergers and disk instabilities). We find that complex histories with multiple transformative events are the norm.
We investigate the star formation histories (SFHs) of high redshift (3 <~ z <~ 5) star-forming galaxies selected based on their rest-frame ultraviolet (UV) colors in the CANDELS/GOODS-S field. By comparing the results from the spectral-energy-distrib ution-fitting analysis with two different assumptions about the SFHs --- i.e., exponentially declining SFHs as well as increasing ones, we conclude that the SFHs of high-redshift star-forming galaxies increase with time rather than exponentially decline. We also examine the correlations between the star formation rates (SFRs) and the stellar masses. When the galaxies are fit with rising SFRs, we find that the trend seen in the data qualitatively matches the expectations from a semi-analytic model of galaxy formation. The mean specific SFR is shown to increase with redshift, also in agreement with the theoretical prediction. From the derived tight correlation between stellar masses and SFRs, we derive the mean SFH of star-forming galaxies in the redshift range of 3 <~ z <~ 5, which shows a steep power-law (with power alpha = 5.85) increase with time. We also investigate the formation timescales and the mean stellar population ages of these star-forming galaxies. Our analysis reveals that UV-selected star-forming galaxies have a broad range of the formation redshift. The derived stellar masses and the stellar population ages show positive correlation in a sense that more massive galaxies are on average older, but with significant scatter. This large scatter implies that the galaxies mass is not the only factor which affects the growth or star formation of high-redshift galaxies.
We compare the predictions of three independently developed semi-analytic galaxy formation models that are being used to aid in the interpretation of results from the CANDELS survey. These models are each applied to the same set of halo merger trees extracted from the Bolshoi simulation and are carefully tuned to match the local galaxy stellar mass function using the powerful method of Bayesian Inference coupled with MCMC or by hand. The comparisons reveal that in spite of the significantly different parameterizations for star formation and feedback processes, the three models yield qualitatively similar predictions for the assembly histories of galaxy stellar mass and star formation over cosmic time. We show that the SAMs generally require strong outflows to suppress star formation in low-mass halos to match the present day stellar mass function. However, all of the models considered produce predictions for the star formation rates and metallicities of low-mass galaxies that are inconsistent with existing data and diverge between the models. We suggest that large differences in the metallicity relations and small differences in the stellar mass assembly histories of model galaxies stem from different assumptions for the outflow mass-loading factor. Importantly, while more accurate observational measurements for stellar mass, SFR and metallicity of galaxies at 1<z<5 will discriminate between models, the discrepancies between the models and existing data of these observables have already revealed challenging problems in understanding star formation and its feedback in galaxy formation. The three sets of models are being used to construct catalogs of mock galaxies on light cones that have the same geometry as the CANDELS survey, which should be particularly useful for quantifying the biases and uncertainties on measurements and inferences from the real observations. -ABRIDGED
We investigate the properties of damped Ly{alpha} absorption systems (DLAs) in semi-analytic models of galaxy formation, including partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases with a molecular gas-based star f ormation recipe. We investigate two approaches for partitioning gas into these constituents: a pressure-based and a metallicity-based recipe. We identify DLAs by passing lines of sight through our simulations to compute HI column densities. We find that models with standard gas radial profiles - where the average specific angular momentum of the gas disc is equal to that of the host dark matter halo - fail to reproduce the observed column density distribution of DLAs. These models also fail to reproduce the distribution of velocity widths {Delta}v, overproducing low {Delta}v relative to high {Delta}v systems. Models with extended radial gas profiles - corresponding to gas discs with higher specific angular momentum - are able to reproduce quite well the column density distribution of absorbers over the column density range 19 < log NHI < 22.5 in the redshift range 2 < z < 3.5. The model with pressure-based gas partitioning also reproduces the observed line density of DLAs, HI gas density, and {Delta}v distribution at z < 3 remarkably well. However all of the models investigated here underproduce DLAs and the HI gas density at z > 3. If this is the case, the flatness in the number of DLAs and HI gas density over the redshift interval 0 < z < 5 may be due to a cosmic coincidence where the majority of DLAs at z > 3 arise from intergalactic gas in filaments while those at z < 3 arise predominantly in galactic discs. We further investigate the dependence of DLA metallicity on redshift and {Delta}v, and find reasonably good agreement with the observations, particularly when including the effects of metallicity gradients (abbrv.).
We present a new approach to study galaxy evolution in a cosmological context. We combine cosmological merger trees and semi-analytic models of galaxy formation to provide the initial conditions for multi-merger hydrodynamic simulations. In this way we exploit the advantages of merger simulations (high resolution and inclusion of the gas physics) and semi-analytic models (cosmological background and low computational cost), and integrate them to create a novel tool. This approach allows us to study the evolution of various galaxy properties, including the treatment of the hot gaseous halo from which gas cools and accretes onto the central disc, which has been neglected in many previous studies. This method shows several advantages over other methods. As only the particles in the regions of interest are included, the run time is much shorter than in traditional cosmological simulations, leading to greater computational efficiency. Using cosmological simulations, we show that multiple mergers are expected to be more common than sequences of isolated mergers, and therefore studies of galaxy mergers should take this into account. In this pilot study, we present our method and illustrate the results of simulating ten Milky Way-like galaxies since z=1. We find good agreement with observations for the total stellar masses, star formation rates, cold gas fractions and disc scale length parameters. We expect that this novel numerical approach will be very useful for pursuing a number of questions pertaining to the transformation of galaxy internal structure through cosmic time.
Observational studies have revealed a downsizing trend in black hole (BH) growth: the number densities of luminous AGN peak at higher redshifts than those of faint AGN. This would seem to imply that massive black holes formed before low mass black ho les, in apparent contradiction to hierarchical clustering scenarios. We investigate whether this observed downsizing in BH growth is reproduced in a semi-analytic model for the formation and evolution of galaxies and black holes, set within the hierarchical paradigm for structure formation (Somerville et al. 2008; S08). In this model, black holes evolve from light seeds (sim100Modot) and their growth is merger-driven. The original S08 model (baseline model) reproduces the number density of AGN at intermediate redshifts and luminosities, but underproduces luminous AGN at very high redshift (z > 3) and overproduces them at low redshift (z < 1). In addition, the baseline model underproduces low-luminosity AGN at low redshift (z < 1). To solve these problems we consider several modifications to the physical processes in the model: (1) a heavy black hole seeding scenario (2) a sub-Eddington accretion rate ceiling that depends on the cold gas fraction, and (3) an additional black hole accretion mode due to disk instabilities. With these three modifications, the models can explain the observed downsizing, successfully reproduce the bolometric AGN luminosity function and simultaneously reproduce galaxy and black hole properties in the local Universe. We also perform a comparison with the observed soft and hard X-ray luminosity functions of AGN, including an empirical correction for torus-level obscuration, and reach similar conclusions. Our best-fit model suggests a scenario in which disk instabilities are the main driver for moderately luminous Seyfert galaxies at low redshift, while major mergers are the main trigger for luminous AGN.
Cosmological hydrodynamical simulations as well as observations indicate that spiral galaxies are comprised of five different components: dark matter halo, stellar disc, stellar bulge, gaseous disc and gaseous halo. While the first four components ha ve been extensively considered in numerical simulations of binary galaxy mergers, the effect of a hot gaseous halo has usually been neglected even though it can contain up to 80% of the total gas within the galaxy virial radius. We present a series of hydrodynamic simulations of major mergers of disc galaxies, that for the first time include a diffuse, rotating, hot gaseous halo. Through cooling and accretion, the hot halo can dissipate and refuel the cold gas disc before and after a merger. This cold gas can subsequently form stars, thus impacting the morphology and kinematics of the remnant. Simulations of isolated systems with total mass M~10^12Msun show a nearly constant star formation rate of ~5Msun/yr if the hot gaseous halo is included, while the star formation rate declines exponentially if it is neglected. We conduct a detailed study of the star formation efficiency during mergers and find that the presence of a hot gaseous halo reduces the starburst efficiency (e=0.5) compared to simulations without a hot halo (e=0.68). Moreover we find cases where the stellar mass of the merger remnant is lower than the sum of the stellar mass of the two progenitor galaxies when evolved in isolation. This suggests a revision to semi-analytic galaxy formation models which assume that a merger always leads to enhanced star formation. We show that adding the hot gas component has a significant effect on the kinematics and internal structure of the merger remnants, like an increased abundance of fast rotators and an r^(1/4) surface brightness profile at small scales.
We explore methods to improve the estimates of star formation rates and mean stellar population ages from broadband photometry of high redshift star-forming galaxies. We use synthetic spectral templates with a variety of simple parametric star format ion histories to fit broadband spectral energy distributions. These parametric models are used to infer ages, star formation rates and stellar masses for a mock data set drawn from a hierarchical semi-analytic model of galaxy evolution. Traditional parametric models generally assume an exponentially declining rate of star-formation after an initial instantaneous rise. Our results show that star formation histories with a much more gradual rise in the star formation rate are likely to be better templates, and are likely to give better overall estimates of the age distribution and star formation rate distribution of Lyman break galaxies. For B- and V-dropouts, we find the best simple parametric model to be one where the star formation rate increases linearly with time. The exponentially-declining model overpredicts the age by 100 % and 120 % for B- and V-dropouts, on average, while for a linearly-increasing model, the age is overpredicted by 9 % and 16 %, respectively. Similarly, the exponential model underpredicts star-formation rates by 56 % and 60 %, while the linearly-increasing model underpredicts by 15 % 22 %, respectively. For U-dropouts, the models where the star-formation rate has a peak (near z ~ 3) provide the best match for age -- overprediction is reduced from 110 % to 26 % -- and star-formation rate -- underprediction is reduced from 58 % to 22 %. We classify different types of star-formation histories in the semi-analytic models and show how the biases behave for the different classes. We also provide two-band calibration formulae for stellar mass and star formation rate estimations.
Deep pencil beam surveys (<1 deg^2) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties are in practice limited by cosmic variance. This is the uncertainty in observational est imates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper we provide tools for experiment design and interpretation. For a given survey geometry we present the cosmic variance of dark matter as a function of mean redshift z and redshift bin size Dz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z, Dz and stellar mass m*. We also provide tabulated values and a software tool. We find that for GOODS at z=2 and with Dz=0.5 the relative cosmic variance of galaxies with m*>10^11 Msun is ~38%, while it is ~27% for GEMS and ~12% for COSMOS. For galaxies of m*~10^10 Msun the relative cosmic variance is ~19% for GOODS, ~13% for GEMS and ~6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z=2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies cosmic variance is less serious.
We study the effect of dissipational gas physics on the vertical heating and thickening of disc galaxies during minor mergers. We produce a suite of minor merger simulations for Milky Way-like galaxies. This suite consists of collisionless simulation s as well as hydrodynamical runs including a gaseous component in the galactic disc. We find that in dissipationless simulations minor mergers cause the scale height of the disc to increase by up to a factor of ~2. When the presence of gas in the disc is taken into account this thickening is reduced by 25% (50%) for an initial disc gas fraction of 20% (40%), leading to a final scale height z0 between 0.6 and 0.7 kpc, regardless of the initial scale height. We argue that the presence of gas reduces disc heating via two mechanisms: absorption of kinetic impact energy by the gas and/or formation of a new thin stellar disc that can cause heated stars to recontract towards the disc plane. We show that in our simulations most of the gas is consumed during the merger and thus the regrowth of a new thin disc has a negligible impact on the z0 of the post merger galaxy. Final disc scale heights found in our simulations are in good agreement with studies of the vertical structure of spiral galaxies where the majority of the systems are found to have scale heights of 0.4 kpc < z0 < 0.8 kpc. We also found no tension between recent measurements of the scale height of the Milky Way thin disc and results coming from our hydrodynamical simulations. We conclude that the existence of a thin disc in the Milky Way and in external galaxies is not in obvious conflict with the predictions of the CDM model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا