ترغب بنشر مسار تعليمي؟ اضغط هنا

125 - R.M. Green 2010
In a previous work (arXiv:0806.1503v2), we defined a family of subcomplexes of the $n$-dimensional half cube by removing the interiors of all half cube shaped faces of dimension at least $k$, and we proved that the homology of such a subcomplex is co ncentrated in degree $k-1$. This homology group supports a natural action of the Coxeter group $W(D_n)$ of type $D$. In this paper, we explicitly determine the characters (over ${Bbb C}$) of these homology representations, which turn out to be multiplicity free. Regarded as representations of the symmetric group $S_n$ by restriction, the homology representations turn out to be direct sums of certain representations induced from parabolic subgroups. The latter representations of $sym_n$ agree (over ${Bbb C}$) with the representations of $sym_n$ on the $(k-2)$-nd homology of the complement of the $k$-equal real hyperplane arrangement.
483 - R.M. Green 2008
We construct a CW decomposition $C_n$ of the $n$-dimensional half cube in a manner compatible with its structure as a polytope. For each $3 leq k leq n$, the complex $C_n$ has a subcomplex $C_{n, k}$, which coincides with the clique complex of the ha lf cube graph if $k = 4$. The homology of $C_{n, k}$ is concentrated in degree $k-1$ and furthermore, the $(k-1)$-st Betti number of $C_{n, k}$ is equal to the $(k-2)$-nd Betti number of the complement of the $k$-equal real hyperplane arrangement. These Betti numbers, which also appear in theoretical computer science, numerical analysis and engineering, are the coefficients of a certain Pascal-like triangle (Sloanes sequence A119258). The Coxeter groups of type $D_n$ act naturally on the complexes $C_{n, k}$, and thus on the associated homology groups.
We investigate a certain linear combination $K(vec{x})=K(a;b,c,d;e,f,g)$ of two Saalschutzian hypergeometric series of type ${_4}F_3(1)$. We first show that $K(a;b,c,d;e,f,g)$ is invariant under the action of a certain matrix group $G_K$, isomorphic to the symmetric group $S_6$, acting on the affine hyperplane $V={(a,b,c,d,e,f,g)inBbb C^7colon e+f+g-a-b-c-d=1}$. We further develop an algebra of three-term relations for $K(a;b,c,d;e,f,g)$. We show that, for any three elements $mu_1,mu_2,mu_3$ of a certain matrix group $M_K$, isomorphic to the Coxeter group $W(D_6)$ (of order 23040), and containing the above group $G_K$, there is a relation among $K(mu_1vec{x})$, $K(mu_2vec{x})$, and $K(mu_3vec{x})$, provided no two of the $mu_j$s are in the same right coset of $G_K$ in $M_K$. The coefficients in these three-term relations are seen to be rational combinations of gamma and sine functions in $a,b,c,d,e,f,g$. The set of $({|M_K|/|G_K|atop 3})=({32atop 3})=4960$ resulting three-term relations may further be partitioned into five subsets, according to the Hamming type of the triple $(mu_1,mu_2,mu_3) $ in question. This Hamming type is defined in terms of Hamming distance between the $mu_j$s, which in turn is defined in terms of the expression of the $mu_j$s as words in the Coxeter group generators. Each three-term relation of a given Hamming type may be transformed into any other of the same type by a change of variable. An explicit example of each of the five types of three-term relations is provided.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا