ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose to use a point contact between a ferromagnetic and a normal metal in the presence of a magnetic field for creating a large inverted spin-population of hot electrons in the contact core. The key point of the proposal is that when these hot electrons relax by flipping their spin, microwave photons are emitted, with a frequency tunable by the applied magnetic field. While point contacts is an established technology their use as a photon source is a new and potentially very useful application. We show that this photon emission process can be detected by means of transport spectroscopy and demonstrate stimulated emission of radiation in the 10-100 GHz range for a model point contact system using a minority-spin ferromagnetic injector. These results can potentially lead to new types of lasers based on spin injection in metals.
We propose a device that can operate as a magneto-resistive switch or oscillator. The device is based on a spin-thermo-electronic control of the exchange coupling of two strong ferromagnets through a weakly ferromagnetic spacer. We show that the loca l Joule heating due to a high concentration of current in a magnetic point contact or a nanopillar can be used to reversibly drive the weak ferromagnet through its Curie point and thereby exchange-decouple the strongly ferromagnetic layers, which have an antiparallel ground state. Such a spin-thermionic parallel-to-antiparallel switching causes magnetoresistance oscillations where the frequency can be controlled by proper biasing from essentially DC to GHz.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا