ترغب بنشر مسار تعليمي؟ اضغط هنا

The relative distribution of abundances of refractory, intermediate, and volatile elements in stars with planets can be an important tool for investigating the internal migration of a giant planet. This migration can lead to the accretion of planetes imals and the selective enrichment of the star with these elements. We report on a spectroscopic determination of the atmospheric parameters and chemical abundances of the parent stars in transiting planets CoRoT-2b and CoRoT-4b. Adding data for CoRoT-3 and CoRoT-5 from the literature, we find a flat distribution of the relative abundances as a function of their condensation temperatures. For CoRoT-2, the relatively high lithium abundance and intensity of its Li I resonance line permit us to propose an age of 120 Myr, making this stars one of the youngest stars with planets to date. We introduce a new methodology to investigate a relation between the abundances of these stars and the internal migration of their planets. By simulating the internal migration of a planet in a disk formed only by planetesimals, we are able to separate the stellar fractions of refractory (R), intermediate (I), and volatile (V) rich planetesimals accreting onto the central star. Intermediate and volatile element fractions enriching the star are similar and much larger than those of pure refractory ones. We also show that these results are highly dependent on the model adopted for the disk distribution regions in terms of R, I, and V elements and other parameters considered. We note however, that this self-enrichment mechanism is only efficient during the first 20-30 Myr or later in the lifetime of the disk when the surface convection layers of the central star for the first time attain its minimum size configuration.
The photospheres of stars hosting planets have larger metallicity than stars lacking planets. In the present work we study the possibility of an earlier metal enrichment of the photospheres by means of impacting planetesimals during the first 20-30My r. Here we explore this contamination process by simulating the interactions of an inward migrating planet with a disc of planetesimal interior to its orbit. The results show the percentage of planetesimals that fall on the star. We identified the dependence of the planets eccentricity ($e_p$) and time scale of migration ($tau$) on the rate of infalling planetesimals. For very fast migrations ($tau=10^2$yr and $tau=10^3$yr) there is no capture in mean motion resonances, independently of the value of $e_p$. Then, due to the planets migration the planetesimals suffer close approaches with the planet and more than 80% of them are ejected from the system. For slow migrations ($tau=10^5$yr and $tau=10^6$yr) the percentage of collisions with the planet decrease with the increase of the planets eccentricity. For $e_p=0$ and $e_p=0.1$ most of the planetesimals were captured in the 2:1 resonance and more than 65% of them collided with the star. Whereas migration of a Jupiter mass planet to very short pericentric distances requires unrealistic high disc masses, these requirements are much smaller for smaller migrating planets. Our simulations for a slowly migrating 0.1 $M_{rm Jupiter}$ planet, even demanding a possible primitive disc three times more massive than a primitive solar nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These calculations open possibilities to explain hot Jupiters exoplanets metallicities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا