ترغب بنشر مسار تعليمي؟ اضغط هنا

HI intensity mapping is an emerging tool to probe dark energy. Observations of the redshifted HI signal will be contaminated by instrumental noise, atmospheric and Galactic foregrounds. The latter is expected to be four orders of magnitude brighter t han the HI emission we wish to detect. We present a simulation of single-dish observations including an instrumental noise model with 1/f and white noise, and sky emission with a diffuse Galactic foreground and HI emission. We consider two foreground cleaning methods: spectral parametric fitting and principal component analysis. For a smooth frequency spectrum of the foreground and instrumental effects, we find that the parametric fitting method provides residuals that are still contaminated by foreground and 1/f noise, but the principal component analysis can remove this contamination down to the thermal noise level. This method is robust for a range of different models of foreground and noise, and so constitutes a promising way to recover the HI signal from the data. However, it induces a leakage of the cosmological signal into the subtracted foreground of around 5%. The efficiency of the component separation methods depends heavily on the smoothness of the frequency spectrum of the foreground and the 1/f noise. We find that as, long as the spectral variations over the band are slow compared to the channel width, the foreground cleaning method still works.
We have studied the implications of high sensitivity polarization measurements of objects from the WMAP point source catalogue made using the VLA at 8.4, 22 and 43 GHz. The fractional polarization of sources is almost independent of frequency with a median of ~2 per cent and an average, for detected sources, of ~3.5 per cent. These values are also independent of the total intensity over the narrow range of intensity we sample. Using a contemporaneous sample of 105 sources detected at all 3 VLA frequencies, we have investigated the spectral behaviour as a function of frequency by means of a 2-colour diagram. Most sources have power-law spectra in total intensity, as expected. On the other hand they appear to be almost randomly distributed in the polarized intensity 2-colour diagram. This is compatible with the polarized spectra being much less smooth than those in intensity and we speculate on the physical origins of this. We have performed an analysis of the correlations between the fractional polarization and spectral indices including computation of the principal components. We find that there is little correlation between the fractional polarization and the intensity spectral indices. This is also the case when we include polarization measurements at 1.4 GHz from the NVSS. In addition we compute 45 rotation measures from polarization position angles which are compatible with a lambda^2 law. We use our results to predict the level of point source confusion noise that contaminates CMB polarization measurements aimed at detecting primordial gravitational waves from inflation. We conclude that some level of source subtraction will be necessary to detect r~0.1 below 100 GHz and at all frequencies to detect r~0.01. We present estimates of the level of contamination expected and the number of sources which need to be subtracted as a function of the imposed cut flux density and frequency.
77 - N. Jackson 2009
We present polarization measurements at 8.4, 22, and 43 GHz made with the VLA of a complete sample of extragalactic sources stronger than 1 Jy in the 5-year WMAP catalogue and with declinations north of -34 degrees. The observations were motivated by the need to know the polarization properties of radio sources at frequencies of tens of GHz in order to subtract polarized foregrounds for future sensitive Cosmic Microwave Background (CMB) experiments. The total intensity and polarization measurements are generally consistent with comparable VLA calibration measurements for less-variable sources, and within a similar range to WMAP fluxes for unresolved sources. A further paper will present correlations between measured parameters and derive implications for CMB measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا