ترغب بنشر مسار تعليمي؟ اضغط هنا

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne astronomical observatory comprised of a 2.5-meter telescope mounted in the aft section of a Boeing 747SP aircraft. During routine operations, several instruments will be avai lable to the astronomical community including cameras and spectrographs in the near- to far-IR. Raw data obtained in-flight require a significant amount of processing to correct for background emission (from both the telescope and atmosphere), remove instrumental artifacts, correct for atmospheric absorption, and apply both wavelength and flux calibration. In general, this processing is highly specific to the instrument and telescope. In order to maximize the scientific output of the observatory, the SOFIA Science Center must provide these post-processed data sets to Guest Investigators in a timely manner. To meet this requirement, we have designed and built the SOFIA Data Processing System (DPS): an in-house set of tools and services that can be used in both automatic (pipeline) and manual modes to process data from a variety of instruments. Here we present an overview of the DPS concepts and architecture, as well as operational results from the first two SOFIA observing cycles (2013--2014).
We present new mid-infrared images of the central region of the Orion Nebula using the newly commissioned SOFIA airborne telescope and its 5 -- 40 micron camera FORCAST. The 37.1 micron images represent the highest resolution observations (<4) ever o btained of this region at these wavelengths. After BN/KL (which is described in a separate letter in this issue), the dominant source at all wavelengths except 37.1 micron is the Ney-Allen Nebula, a crescent-shaped extended source associated with theta 1D. The morphology of the Ney-Allen nebula in our images is consistent with the interpretation that it is ambient dust swept up by the stellar wind from theta 1D, as suggested by Smith et al. (2005). Our observations also reveal emission from two proplyds (proto-planetary disks), and a few embedded young stellar objects (YSOs; IRc9, and OMC1S IRS1, 2, and 10). The spectral energy distribution for IRc9 is presented and fitted with standard YSO models from Robitaille et al. (2007) to constrain the total luminosity, disk size, and envelope size. The diffuse, nebular emission we observe at all FORCAST wavelengths is most likely from the background photodissociation region (PDR) and shows structure that coincides roughly with H_alpha and [N II] emission. We conclude that the spatial variations in the diffuse emission are likely due to undulations in the surface of the background PDR.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا