ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate single-particle properties of a one-component Fermi gas with a tunable p-wave interaction. Including pairing fluctuations associated with this anisotropic interaction within a $T$-matrix theory, we calculate the single-particle density of states, as well as the spectral weight, above the superfluid transition temperature $T_{rm c}$. Starting from the weak-coupling regime, we show that the so-called pseudogap first develops in these quantities with increasing the interaction strength. However, when the interaction becomes strong to some extent, the pseudogap becomes obscure to eventually disappear in the strong-coupling regime. This non-monotonic interaction dependence is quite different from the case of an s-wave interaction, where the pseudogap simply develops with increasing the interaction strength. The difference between the two cases is shown to originate from the momentum dependence of the p-wave interaction, which vanishes in the low momentum limit. We also identify the pseudogap regime in the phase diagram with respect to the temperature and the p-wave interaction strength. Since the pseudogap is a precursor phenomenon of the superfluid phase transition, our results would be useful for the research toward the realization of p-wave superfluid Fermi gases.
251 - S. Sugai , Y. Mizuno , R. Watanabe 2010
Two magnon excitations and the nodal spin density wave (SDW) gap were observed in BaFe2As2 by Raman scattering. Below the SDW transition temperature (TSDW) nodal SDW gap opens together with new excitations in reconstructed electronic states. The two- magnon peak remains above TSDW and moreover the energy increases a little. The change from the long-range ordered state to the short-range correlated state is compared to the cuprate superconductors.
239 - S. Tsuchiya , R. Watanabe , 2009
We study pseudogap behaviors of ultracold Fermi gases in the BCS-BEC crossover region. We calculate the density of states (DOS), as well as the single-particle spectral weight, above the superfluid transition temperature $T_{rm c}$ including pairing fluctuations within a $T$-matrix approximation. We find that DOS exhibits a pseudogap structure in the BCS-BEC crossover region, which is most remarkable near the unitarity limit. We determine the pseudogap temperature $T^*$ at which the pseudogap structure in DOS disappears. We also introduce another temperature $T^{**}$ at which the BCS-like double-peak structure disappears in the spectral weight. While one finds $T^*>T^{**}$ in the BCS regime, $T^{**}$ becomes higher than $T^*$ in the crossover and BEC regime. We also determine the pseudogap region in the phase diagram in terms of temperature and pairing interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا