ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the melting dynamics of large ice balls in a turbulent von Karman flow at very high Reynolds number. Using an optical shadowgraphy setup, we record the time evolution of particle sizes. We study the heat transfer as a function of the particl e scale Reynolds number for three cases: fixed ice balls melting in a region of strong turbulence with zero mean flow, fixed ice balls melting under the action of a strong mean flow with lower fluctuations, and ice balls freely advected in the whole flow. For the fixed particles cases, heat transfer is observed to be much stronger than in laminar flows, the Nusselt number behaving as a power law of the Reynolds number of exponent 0.8. For freely advected ice balls, the turbulent transfer is further enhanced and the Nusselt number is proportional to the Reynolds number. The surface heat flux is then independent of the particles size, leading to an ultimate regime of heat transfer reached when the thermal boundary layer is fully turbulent.
We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser Doppler Velocimetry technique. The probability density functions (PDF) of particle accelerations and their auto-correlation in time are computed. Numerical results are obtained from a direct numerical simulation in which a suspension of passive pointwise particles is tracked, with the same finite density and the same response time as in the experiment. We observe a good agreement for both the variance of acceleration and the autocorrelation timescale of the dynamics; small discrepancies on the shape of the acceleration PDF are observed. We discuss the effects induced by the finite size of the particles, not taken into account in the present numerical simulations.
We study the flow response to an externally imposed homogeneous magnetic field in a turbulent swirling flow of liquid sodium -- the VKS2 experiment in which magnetic Reynolds numbers Rm up to 50 are reached. Induction effects are larger than in the f ormer VKS1 experiment. At Rm larger than about 25, the local amplitude of induced field components supersedes that of the applied field, and exhibits non-Gaussian fluctuations. Slow dynamical instationarities and low-frequency bimodal dynamics are observed in the induction, presumably tracing back to large scale fluctuations in the hydrodynamic flow.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا