ترغب بنشر مسار تعليمي؟ اضغط هنا

In April 2004 the first image was obtained of a planetary mass companion (now known as 2M1207 b) in orbit around a self-luminous object different from our own Sun (the young brown dwarf 2MASSW J1207334-393254, hereafter 2M1207 A). 2M1207 b probably f ormed via fragmentation and gravitational collapse, offering proof that such a mechanism can form bodies in the planetary mass regime. However, the predicted mass, luminosity, and radius of 2M1207 b depend on its age, distance, and other observables such as effective temperature. To refine our knowledge of the physical properties of 2M1207 b and its nature, we obtained an accurate determination of the distance to the 2M1207 A and b system by measurements of its trigonometric parallax at the milliarcsec level. With the ESO NTT/SUSI2 telescope, in 2006 we began a campaign of photometric and astrometric observations to measure the trigonometric parallax of 2M1207 A. An accurate distance ($52.4pm 1.1$ pc) to 2M1207A was measured. From distance and proper motions we derived spatial velocities fully compatible with TWA membership. With this new distance estimate, we discuss three scenarios regarding the nature of 2M1207 b: (1) a cool ($1150pm150$ K) companion of mass $4pm1$ M$_{rm{Jup}}$, (2) a warmer ($1600pm100$ K) and heavier ($8pm2$ M$_{rm{Jup}}$) companion occulted by an edge-on circum-secondary disk or (3) a hot protoplanet collision afterglow.
The status of 38 halo white dwarf candidates identified by Oppenheimer et al. (2001) has been intensively discussed by various authors. In analyses undertaken to date, trigonometric parallaxes are crucial missing data. Distance measurements are manda tory to kinematically segregate halo object from disk objects and hence enable a more reliable estimate of the local density of halo dark matter residing in such objects. We present trigonometric parallax measurements for 15 candidate halo white dwarfs (WDs) selected from the Oppenheimer et al. (2001) list. We observed the stars using the ESO 1.56-m Danish Telescope and ESO 2.2-m telescope from August 2001 to July 2004. Parallaxes with accuracies of 1--2 mas were determined yielding relative errors on distances of $sim5$% for 6 objects, $sim12$% for 3 objects, and $sim20$% for two more objects. Four stars appear to be too distant (probably farther than 100 pc) to have measurable parallaxes in our observations. Distances, absolute magnitudes and revised space velocities were derived for the 15 halo WDs from the Oppenheimer et al. (2001) list. Halo membership is confirmed unambiguously for 6 objects while 5 objects may be thick disk members and 4 objects are too distant to draw any conclusion based solely on kinematics. Comparing our trigonometric parallaxes with photometric parallaxes used in previous work reveals an overestimation of distance as derived from photometric techniques. This new data set can be used to revise the halo white dwarf space density, and that analysis will be presented in a subsequent publication.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا