ترغب بنشر مسار تعليمي؟ اضغط هنا

76 - A. Bemporad , R. Susino , 2014
In this work UV and white light (WL) coronagraphic data are combined to derive the full set of plasma physical parameters along the front of a shock driven by a Coronal Mass Ejection. Pre-shock plasma density, shock compression ratio, speed and incli nation angle are estimated from WL data, while pre-shock plasma temperature and outflow velocity are derived from UV data. The Rankine-Hugoniot (RH) equations for the general case of an oblique shock are then applied at three points along the front located between $2.2-2.6$ R$_odot$ at the shock nose and at the two flanks. Stronger field deflection (by $sim 46^circ$), plasma compression (factor $sim 2.7$) and heating (factor $sim 12$) occur at the nose, while heating at the flanks is more moderate (factor $1.5-3.0$). Starting from a pre-shock corona where protons and electrons have about the same temperature ($T_p sim T_e sim 1.5 cdot 10^6$ K), temperature increases derived with RH equations could better represent the protons heating (by dissipation across the shock), while the temperature increase implied by adiabatic compression (factor $sim 2$ at the nose, $sim 1.2-1.5$ at the flanks) could be more representative of electrons heating: the transit of the shock causes a decoupling between electron and proton temperatures. Derived magnetic field vector rotations imply a draping of field lines around the expanding flux rope. The shock turns out to be super-critical (sub-critical) at the nose (at the flanks), where derived post-shock plasma parameters can be very well approximated with those derived by assuming a parallel (perpendicular) shock.
We study the signatures of different coronal heating regimes on the differential emission measure (DEM) of multi-stranded coronal loops by means of hydrodynamic simulations. We consider heating either uniformly distributed along the loops or localize d close to the chromospheric footpoints, in both steady and impulsive conditions. Our simulations show that condensation at the top of the loop forms when the localized heating is impulsive with a pulse cadence time shorter than the plasma cooling time, and the pulse energy is below a certain threshold. A condensation does not produce observable signatures in the global DEM structure. Conversely, the DEM coronal peak is found sensitive to the pulse cadence time. Our simulations can also give an explanation of the warm overdense and hot underdense loops observed by TRACE, SOHO and Yohkoh. However, they are unable to reproduce both the transition region and the coronal DEM structure with a unique set of parameters, which outlines the need for a more realistic description of the transition region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا