ترغب بنشر مسار تعليمي؟ اضغط هنا

261 - N. Kains , R. Street , J.-Y. Choi 2013
We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic Bulge. Based on detailed mo delling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q=1.9 x 10^-3. Thanks to our detection of higher-order effects on the light curve due to the Earths orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. We find that the lens is made up of a planet of mass 0.53 +- 0.21,M_Jup orbiting an M dwarf host star with a mass of 0.26 +- 0.11 M_Sun. The planetary system is located at a distance of 2.57 +- 0.61 kpc towards the Galactic Centre. The projected separation of the planet from its host star is d=1.408 +- 0.019, in units of the Einstein radius, which corresponds to 2.72 +- 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 +- 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around 1-1.5 AU.
81 - Y. Tsapras , R. Street , K. Horne 2008
RoboNet-II uses a global network of robotic telescopes to perform follow-up observations of microlensing events in the Galactic Bulge. The current network consists of three 2m telescopes located in Hawaii and Australia (owned by Las Cumbres Observato ry) and the Canary Islands (owned by Liverpool John Moores University). In future years the network will be expanded by deploying clusters of 1m telescopes in other suitable locations. A principal scientific aim of the RoboNet-II project is the detection of cool extra-solar planets by the method of gravitational microlensing. These detections will provide crucial constraints to models of planetary formation and orbital migration. RoboNet-II acts in coordination with the PLANET microlensing follow-up network and uses an optimization algorithm (web-PLOP) to select the targets and a distributed scheduling paradigm (eSTAR) to execute the observations. Continuous automated assessment of the observations and anomaly detection is provided by the ARTEMiS system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا