ترغب بنشر مسار تعليمي؟ اضغط هنا

We performed Herschel/HIFI observations of intermediate-excitation molecular lines in the far-infrared/submillimeter range in a sample of ten protoplanetary nebulae and young planetary nebulae. The high spectral resolution provided by HIFI yields acc urate measurements of the line profiles. The observation of these high-energy transitions allows an accurate study of the excitation conditions, particularly in the warm gas, which cannot be properly studied from the low-energy lines. We have detected FIR/sub-mm lines of several molecules, in particular of 12CO, 13CO, and H2O. Emission from other species, like NH3, OH, H2^{18}O, HCN, SiO, etc, has been also detected. Wide profiles showing sometimes spectacular line wings have been found. We have mainly studied the excitation properties of the high-velocity emission, which is known to come from fast bipolar outflows. From comparison with general theoretical predictions, we find that CRL 618 shows a particularly warm fast wind, with characteristic kinetic temperature Tk >~ 200 K. In contrast, the fast winds in OH 231.8+4.2 and NGC 6302 are cold, Tk ~ 30 K. Other nebulae, like CRL 2688, show intermediate temperatures, with characteristic values around 100 K. We also discuss how the complex structure of the nebulae can affect our estimates, considering two-component models. We argue that the differences in temperature in the different nebulae can be due to cooling after the gas acceleration (that is probably due to shocks); for instance, CRL 618 is a case of very recent acceleration, less than ~ 100 yr ago, while the fast gas in OH 231.8+4.2 was accelerated ~ 1000 yr ago. We also find indications that the densest gas tends to be cooler, which may be explained by the expected increase of the radiative cooling efficiency with the density.
We performed Herschel/HIFI observations of several CO lines in the far-infrared/sub-mm in the protoplanetary nebula CRL618. The high spectral resolution provided by HIFI allows measurement of the line profiles. Since the dynamics and structure of the nebula is well known from mm-wave interferometric maps, it is possible to identify the contributions of the different nebular components (fast bipolar outflows, double shells, compact slow shell) to the line profiles. The observation of these relatively high-energy transitions allows an accurate study of the excitation conditions in these components, particularly in the warm ones, which cannot be properly studied from the low-energy lines. The 12CO J=16-15, 10-9, and 6-5 lines are easily detected in this source. 13CO J=10-9 and 6-5 are also detected. Wide profiles showing spectacular line wings have been found, particularly in 12CO 16-15. Other lines observed simultaneously with CO are also shown. Our analysis of the CO high-J transitions, when compared with the existing models, confirms the very low expansion velocity of the central, dense component, which probably indicates that the shells ejected during the last AGB phases were driven by radiation pressure under a regime of maximum transfer of momentum. No contribution of the diffuse halo found from mm-wave data is identified in our spectra, because of its low temperature. We find that the fast bipolar outflow is quite hot, much hotter than previously estimated; for instance, gas flowing at 100 km/s must have a temperature higher than ~ 200 K. Probably, this very fast outflow, with a kinematic age < 100 yr, has been accelerated by a shock and has not yet cooled down. The double empty shell found from mm-wave mapping must also be relatively hot, in agreement with the previous estimate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا