ترغب بنشر مسار تعليمي؟ اضغط هنا

We calculate, in the continuum limit of quenched lattice QCD, the form factor that enters the decay rate of the semileptonic decay B --> D* l nu. By using the step scaling method (SSM), previously introduced to handle two scale problems in lattice QC D, and by adopting flavor twisted boundary conditions we extract F(w) at finite momentum transfer and at the physical values of the heavy quark masses. Our results can be used in order to extract the CKM matrix element Vcb by the experimental decay rate without model dependent extrapolations. The value of Vcb agrees with the one obtained from the B --> D l nu channel and makes us confident that the quenched approximation well applies to these transitions.
We calculate, in the continuum limit of quenched lattice QCD, the matrix elements of the heavy-heavy vector current between heavy-light pseudoscalar meson states. We present the form factors for different values of the initial and final meson masses at finite momentum transfer. In particular, we calculate the non-perturbative correction to the differential decay rate of the process B --> D l nu including the case of a non-vanishing lepton mass.
We calculate, in the continuum limit of quenched lattice QCD, the form factor that enters in the decay rate of the semileptonic decay B --> D l nu. Making use of the step scaling method (SSM), previously introduced to handle two scale problems in lat tice QCD, and of flavour twisted boundary conditions we extract G(w) at finite momentum transfer and at the physical values of the heavy quark masses. Our results can be used in order to extract the CKM matrix element Vcb by the experimental decay rate without model dependent extrapolations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا