ترغب بنشر مسار تعليمي؟ اضغط هنا

71 - F. Boone , D. Schaerer , R. Pello 2011
The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high redshift galaxy searches based on broad band optical/NIR photometry by lower redshift dusty galaxies as both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. {This work shows how the far infrared (FIR) domain can help to recognize likely low-z interlopers in an optical/NIR search for high-z galaxies.} We analyse the FIR SEDs of two galaxies proposed as very high redshift ($z>7$) dropout candidates based on deep Hawk-I/VLT observations. The FIR SEDs are sampled with PACS/Herschel at 100 and 160,$mu$m, with SPIRE/Herschel at 250, 350 and 500,$mu$m and with LABOCA/APEX at 870,$mu$m. We find that redshifts $>7$ would imply extreme FIR SEDs (with dust temperatures $>100$,K and FIR luminosities $>10^{13}$,$L_{odot}$). At z$sim$2, instead, the SEDs of both sources would be compatible with that of typical ULIRGs/SMGs. Considering all the data available for these sources from visible to FIR we re-estimate the redshifts and we find $zsim$1.6--2.5. Due to the strong spectral breaks observed in these galaxies, standard templates from the literature fail to reproduce the visible-near IR part of the SEDs even when additional extinction is included. These sources resemble strongly dust obscured galaxies selected in Spitzer observations with extreme visible-to-FIR colors, and the galaxy GN10 at $z=4$. Galaxies with similar SEDs could contaminate other high redshift surveys.
97 - C. Adami , R. Pello , M. P. Ulmer 2008
This project is the continuation of our study of faint Low Surface Brightness Galaxies (fLSBs) in one of the densest nearby galaxy regions known, the Coma cluster. Our goal is to improve our understanding of the nature of these objects by comparing t he broad band spectral energy distribution with population synthesis models. The data were obtained with the MEGACAM and CFH12K cameras at the CFHT. We used the resulting photometry in 5 broad band filters (u*, B, V, R, and I), that included new u*-band data, to fit spectral models. With these spectral fits we inferred a cluster membership criterium, as well as the ages, dust extinctions, and photometric types of these fLSBs. We show that about half of the Coma cluster fLSBs have a spectral energy distribution well represented in our template library while the other half present a flux deficit at ultraviolet wavelengths. Among the well represented, ~80% are probably part of the Coma cluster based on their spectral energy distribution. They are relatively young (younger than 2.3 Gyrs for 90% of the sample) non-starburst objects. The later their type, the younger fLSBs are. A significant part of the fLSBs are quite dusty objects. fLSBs are low stellar mass objects (the later their type the less massive they are), with stellar masses comparable to globular clusters for the faintest ones. Their characteristics are correlated with infall directions, confirming the disruptive origin for part of them.
65 - C. Adami , O. Ilbert , R. Pello 2008
We investigate the Coma cluster galaxy luminosity function (GLF) at faint magnitudes, in particular in the u* band by applying photometric redshift techniques applied to deep u*, B, V, R, I images covering a region of ~1deg2 (R 24). Global and local GLFs in the B, V, R and I bands obtained with photometric redshift selection are consistent with our previous results based on a statistical background subtraction. In the area covered only by the u* image, the GLF was also derived after applying a statistical background subtraction. The GLF in the u* band shows an increase of the faint end slope towards the outer regions of the cluster (from alpha~1 in the cluster center to alpha~2 in the cluster periphery). This could be explained assuming a short burst of star formation in these galaxies when entering the cluster. The analysis of the multicolor type spatial distribution reveals that late type galaxies are distributed in clumps in the cluster outskirts, where X-ray substructures are also detected and where the GLF in the u* band is steeper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا