ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an analysis of the significantly expanded HARPS 2011 radial velocity data set for GJ 581 that was presented by Forveille et al. (2011). Our analysis reaches substantially different conclusions regarding the evidence for a Super-Earth-mass planet in the stars Habitable Zone. We were able to reproduce their reported chi_{ u}^2 and RMS values only after removing some outliers from their models and refitting the trimmed down RV set. A suite of 4000 N-body simulations of their Keplerian model all resulted in unstable systems and revealed that their reported 3.6sigma detection of e=0.32 for the eccentricity of GJ 581e is manifestly incompatible with the systems dynamical stability. Furthermore, their Keplerian model, when integrated only over the time baseline of the observations, significantly increases the chi_{ u}^2 and demonstrates the need for including non-Keplerian orbital precession when modeling this system. We find that a four-planet model with all of the planets on circular or nearly circular orbits provides both an excellent self-consistent fit to their RV data and also results in a very stable configuration. The periodogram of the residuals to a 4-planet all-circular-orbit model reveals significant peaks that suggest one or more additional planets in this system. We conclude that the present 240-point HARPS data set, when analyzed in its entirety, and modeled with fully self-consistent stable orbits, by and of itself does offer significant support for a fifth signal in the data with a period near 32 days. This signal has a False Alarm Probability of <4% and is consistent with a planet of minimum mass of 2.2 Earth-masses, orbiting squarely in the stars Habitable Zone at 0.13 AU, where liquid water on planetary surfaces is a distinct possibility
Keck/HIRES precision radial velocities of HD 207832 indicate the presence of two Jovian-type planetary companions in Keplerian orbits around this G star. The planets have minimum masses of 0.56 and 0.73 Jupiter-masses with orbital periods of ~162 and ~1156 days, and eccentricities of 0.13 and 0.27, respectively. Stromgren b and y photometry reveals a clear stellar rotation signature of the host star with a period of 17.8 days, well separated from the period of the radial velocity variations, reinforcing their Keplerian origin. The values of the semimajor axes of the planets suggest that these objects have migrated from the region of giant planet formation to closer orbits. In order to examine the possibility of the existence of additional (small) planets in the system, we studied the orbital stability of hypothetical terrestrial-sized objects in the region between the two planets and interior to the orbit of the inner body. Results indicated that stable orbits exist only in a small region interior to planet b. However, the current observational data offer no evidence for the existence of additional objects in this system.
We measure a tilt of 86+-6 deg between the sky projections of the rotation axis of the WASP-7 star, and the orbital axis of its close-in giant planet. This measurement is based on observations of the Rossiter-McLaughlin (RM) effect with the Planet Fi nder Spectrograph on the Magellan II telescope. The result conforms with the previously noted pattern among hot-Jupiter hosts, namely, that the hosts lacking thick convective envelopes have high obliquities. Because the planets trajectory crosses a wide range of stellar latitudes, observations of the RM effect can in principle reveal the stellar differential rotation profile; however, with the present data the signal of differential rotation could not be detected. The host star is found to exhibit radial-velocity noise (``stellar jitter) with an amplitude of ~30m/s over a timescale of days.
We report low mass companions orbiting five Solar-type stars that have emerged from the Magellan precision Doppler velocity survey, with minimum (Msini) masses ranging from 1.2 to 25 Mjup. These nearby target stars range from mildly metal-poor to met al-rich, and appear to have low chromospheric activity. The companions to the brightest two of these stars have previously been reported from the CORALIE survey. Four of these companions (HD 48265-b, HD 143361-b, HD 28185-b, HD 111232-b) are low-mass Jupiter-like planets in eccentric intermediate and long-period orbits. On the other hand, the companion to HD 43848 appears to be a long period brown dwarf in a very eccentric orbit.
We report the detection of the first two planets from the N2K Doppler planet search program at the Magellan telescopes. The first planet has a mass of M sin i = 4.96 M_Jup and is orbiting the G3 IV star HD154672 with an orbital period of 163.9 days. The second planet is orbiting the F7 V star HD205739 with an orbital period of 279.8 days and has a mass of M sin i = 1.37 M_Jup. Both planets are in eccentric orbits, with eccentricities e = 0.61 and e = 0.27, respectively. Both stars are metal rich and appear to be chromospherically inactive, based on inspection of their Ca II H and K lines. Finally, the best Keplerian model fit to HD205739b shows a trend of 0.0649 m/s/day, suggesting the presence of an additional outer body in that system.
Precision Doppler velocity measurements from the Anglo-Australian Tele- scope reveal a planet with a 9.4+/-0.4 year period orbiting the M1.5 dwarf GJ 832. Within measurement uncertainty the orbit is circular, and the minimum mass (m sin i) of the pla net is 0.64+/-0.06 MJUP. GJ 832 appears to be depleted in met- als by at least 50% relative to the Sun, as are a significant fraction of the M dwarfs known to host exoplanets. GJ 832 adds another Jupiter-mass planet to the known census of M dwarf exoplanets, which currently includes a significant number of Neptune-mass planets. GJ 832 is an excellent candidate for astromet- ric orbit determination with alpha sin i = 0.95 mas. GJ 832b has the second largest angular distance from its star among radial velocity detected exoplanets (0.69 arc sec) making it a potentially interesting target for future direct detection.
We report 18 years of Doppler shift measurements of a nearby star, 55 Cancri, that exhibit strong evidence for five orbiting planets. The four previously reported planets are strongly confirmed here. A fifth planet is presented, with an apparent orbi tal period of 260 days, placing it 0.78 AU from the star in the large empty zone between two other planets. The velocity wobble amplitude of 4.9 ms implies a minimum planet mass msini = 45.7 mearthe. The orbital eccentricity is consistent with a circular orbit, but modest eccentricity solutions give similar chisq fits. All five planets reside in low eccentricity orbits, four having eccentricities under 0.1. The outermost planet orbits 5.8 AU from the star and has a minimum mass, msini = 3.8 mjupe, making it more massive than the inner four planets combined. Its orbital distance is the largest for an exoplanet with a well defined orbit. The innermost planet has a semi-major axis of only 0.038 AU and has a minimum mass, msinie, of only 10.8 mearthe, one of the lowest mass exoplanets known. The five known planets within 6 AU define a {em minimum mass protoplanetary nebula} to compare with the classical minimum mass solar nebula. Numerical N-body simulations show this system of five planets to be dynamically stable and show that the planets with periods of 14.65 and 44.3 d are not in a mean-motion resonance. Millimagnitude photometry during 11 years reveals no brightness variations at any of the radial velocity periods, providing support for their interpretation as planetary.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا