ترغب بنشر مسار تعليمي؟ اضغط هنا

The determination of age is a critical component in the study of a population of stellar clusters. In this letter we present a new absolute age indicator for young massive star clusters based on J-H colour. This novel method identifies clusters as ol der or younger than 5.7 +/- 0.8 Myr based on the appearance of the first population of red supergiant stars. We test the technique on the stellar cluster population of the nearby spiral galaxy, M83, finding good agreement with the theoretical predictions. The localisation of this technique to the near-IR promises that it may be used well into the future with space-- and ground--based missions optimised for near-IR observations.
58 - R.-P. Kudritzki 2011
The quantitative spectral analysis of low resolution Keck LRIS spectra of blue supergiants in the disk of the giant spiral galaxy M81 is used to determine stellar effective temperatures, gravities, metallicities, luminosites, interstellar reddening a nd a new distance using the Flux-weighted Gravity--Luminosity Relationship (FGLR). Substantial reddening and extinction is found with E(B-V) ranging between 0.13 to 0.38 mag and an average value of 0.26 mag. The distance modulus obtained after individual reddening corrections is 27.7+/-0.1 mag. The result is discussed with regard to recently measured TRGB and Cepheid distances. The metallicities (based on elements such as iron, titanium, magnesium) are supersolar (~0.2 dex) in the inner disk (R<=5kpc) and slightly subsolar (~ -0.05 dex) in the outer disk (R>10 kpc) with a shallow metallicity gradient of 0.034 dex/kpc. The comparison with published oxygen abundances of planetary nebulae and metallicities determined through fits of HST color-magnitude diagrams indicates a late metal enrichment and a flattening of the abundance gradient over the last 5 Gyrs. This might be the result of gas infall from metal rich satellite galaxies. Combining these M81 metallicities with published blue supergiant abundance studies in the Local Group and the Sculptor Group a galaxy mass metallicity-relationship based solely on stellar spectroscopic studies is presented and compared with recent studies of SDSS star forming galaxies.
We present simulated J-band spectroscopy of red giants and supergiants with a 42m European Extremely Large Telescope (E-ELT), using tools developed toward the EAGLE Phase A instrument study. The simulated spectra are used to demonstrate the validity of the 1.15-1.22 micron region to recover accurate stellar metallicities from Solar and metal-poor (one tenth Solar) spectral templates. From tests at spectral resolving powers of four and ten thousand, we require continuum signal-to-noise ratios in excess of 50 (per two-pixel resolution element) to recover the input metallicity to within 0.1 dex. We highlight the potential of direct estimates of stellar metallicites (over the range -1<[Fe/H]<0) of red giants with the E-ELT, reaching out to distances of ~5 Mpc for stars near the tip of the red giant branch. The same simulations are also used to illustrate the potential for quantitative spectroscopy of red supergiants beyond the Local Volume to tens of Mpc. Calcium triplet observations in the I-band are also simulated to provide a comparison with contemporary techniques. Assuming the EAGLE instrument parameters and simulated performances from adaptive optics, the J-band method is more sensitive in terms of recovering metallicity estimates for a given target. This appears very promising for ELT studies of red giants and supergiants, offering a direct metallicity tracer at a wavelength which is less afffected by extinction than shortward diagnostics and, via adaptive optics, with better image quality.
We propose that a sufficiently advanced civilization may employ Cepheid variable stars as beacons to transmit all-call information throughout the galaxy and beyond. One can construct many scenarios wherein it would be desirable for such a civilizatio n of star ticklers to transmit data to anyone else within viewing range. The beauty of employing Cepheids is that these stars can be seen from afar(we monitor them out through the Virgo cluster), and any developing technological society would seem to be likely to closely observe them as distance markers. Records exist of Cepheids for well over one hundred years. We propose that these (and other regularly variable types of stars) be searched for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional signaling.
84 - R.-P. Kudritzki 2008
A quantitative spectral analysis of 24 A supergiants in the Sculptor Group spiral galaxy NGC 300 at a distance of 1.9 Mpc is presented. A new method is introduced to analyze low resolution (~5 AE) spectra, which yields metallicities accurate to 0.2 d ex including the uncertainties arising from the errors in Teff (5%) and log g (0.2 dex). For the first time the stellar metallicity gradient based on elements such as titanium and iron in a galaxy beyond the Local Group is investigated. Solar metallicity is measured in the center and 0.3 solar in the outskirts and a logarithmic gradient of -0.08 dex/kpc. An average reddening of E(B-V)~0.12 mag is obtained, however with a large variation from 0.07 to 0.24 mag. We also determine stellar radii, luminosities and masses and discuss the evolutionary status. Finally, the observed relationship between absolute bolometric magnitudes M_{bol} and flux weighted gravities g_{F} = g/Teff^4 is investigated. At high temperatures the strengths of the Balmer lines depends solely on the flux-weighted gravity, which allows a precise direct determination of log g_{F} with an accuracy of 0.05 to 0.1 dex. We find a tight relationship between M_{bol} and log g_{F} in agreement with stellar evolution theory. Combining these new results with previous work on Local Group galaxies we obtain a new flux weighted gravity luminosity relationship (FGLR), which is very well defined and appears to be an excellent alternative tool to determine distances to galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا