ترغب بنشر مسار تعليمي؟ اضغط هنا

We exploit the redundancy of the language-based source to help polar decoding. By judging the validity of decoded words in the decoded sequence with the help of a dictionary, the polar list decoder constantly detects erroneous paths after every few b its are decoded. This path-pruning technique based on joint decoding has advantages over stand-alone polar list decoding in that most decoding errors in early stages are corrected. In order to facilitate the joint decoding, we first propose a construction of dynamic dictionary using a trie and show an efficient way to trace the dictionary during decoding. Then we propose a joint decoding scheme of polar codes taking into account both information from the channel and the source. The proposed scheme has the same decoding complexity as the list decoding of polar codes. A list-size adaptive joint decoding is further implemented to largely reduce the decoding complexity. We conclude by simulation that the joint decoding schemes outperform stand-alone polar codes with CRC-aided successive cancellation list decoding by over 0.6 dB.
We study four dimensional large-N SU(N) Yang-Mills theory coupled to adjoint overlap fermions on a single site lattice. Lattice simulations along with perturbation theory show that the bare quark mass has to be taken to zero as one takes the continuu m limit in order to be in the physically relevant center-symmetric phase. But, it seems that it is possible to take the continuum limit with any renormalized quark mass and still be in the center-symmetric physics. We have also conducted a study of the correlations between Polyakov loop operators in different directions and obtained the range for the Wilson mass parameter that enters the overlap Dirac operator.
It is believed that fermions in adjoint representation on single site lattice will restore the center symmetry, which is a crucial requirement for the volume independence of large-N lattice gauge theories. We present a perturbative analysis which sup ports the assumption for overlap fermions, but shows that center symmetry is broken for naive fermions.
We consider the large N limit of four dimensional SU(N) Yang-Mills field coupled to adjoint fermions on a single site lattice. We use perturbative techniques to show that the Z^4_N center-symmetries are broken with naive fermions but they are not bro ken with overlap fermions. We use numerical techniques to support this result. Furthermore, we present evidence for a non-zero chiral condensate for one and two Majorana flavors at one value of the lattice gauge coupling.
The vector meson mass is computed as a function of quark mass in the large N limit of QCD. We use continuum reduction and directly compute the vector meson propagator in momentum space. Quark momentum is inserted using the quenched momentum prescription.
We review the spectral flow techniques for computing the index of the overlap Dirac operator including results relevant for SUSY Yang-Mills theories. We describe properties of the overlap Dirac operator, and methods to implement it numerically. We us e the results from the spectral flow to illuminate the difficulties in numerical calculations involving domain wall and overlap fermions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا