ترغب بنشر مسار تعليمي؟ اضغط هنا

103 - R. N. Bisset , D. Baillie , 2013
We consider the quasi-particle excitations of a trapped dipolar Bose-Einstein condensate. By mapping these excitations onto radial and angular momentum we show that the roton modes are clearly revealed as discrete fingers in parameter space, whereas the other modes form a smooth surface. We examine the properties of the roton modes and characterize how they change with the dipole interaction strength. We demonstrate how the application of a perturbing potential can be used to engineer angular rotons, i.e. allowing us to controllably select modes of non-zero angular momentum to become the lowest energy rotons.
We demonstrate that measurements of atom-number fluctuations in a trapped dipolar condensate can reveal the presence of the elusive roton excitation. The key signature is a super-Poissonian peak in the fluctuations as the size of the measurement cell is varied, with the maximum occurring when the size is comparable to the roton wavelength. The magnitude of this roton feature is enhanced with temperature. The variation in fluctuations across the condensate demonstrates that the roton excitations are effectively confined to propagate in the densest central region, realizing a density trapped roton gas. While our main results are based on full numerical solutions of the meanfield equations, we also develop and validate a simple local density theory. Finally, we consider fluctuations measured within a washer-shaped cell which filters out the contribution of modes with nonzero angular momentum and provides a signal sensitive to individual roton modes.
147 - R. N. Bisset , D. Baillie , 2012
We develop a finite temperature Hartree theory for the trapped dipolar Bose gas. We use this theory to study thermal effects on the mechanical stability of the system and density oscillating condensate states. We present results for the stability pha se diagram as a function of temperature and aspect ratio. In oblate traps above the critical temperature for condensation we find that the Hartree theory predicts significant stability enhancement over the semiclassical result. Below the critical temperature we find that thermal effects are well described by accounting for the thermal depletion of the condensate. Our results also show that density oscillating condensate states occur over a range of interaction strengths that broadens with increasing temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا