ترغب بنشر مسار تعليمي؟ اضغط هنا

249 - R. Mondaini , T. Paiva , 2014
We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant $J $ interact with the electronic spins of several adjoining metallic sheets via a coupling $J_H$. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic ($J>0$) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case ($J<0$) the metallic degrees of freedom reduce the ordering temperature. In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on $J_H$. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.
87 - T. Ying , R. Mondaini , X.D. Sun 2014
Determinant Quantum Monte Carlo (DQMC) is used to determine the pairing and magnetic response for a Hubbard model built up from four-site clusters -a two-dimensional square lattice consisting of elemental 2x2 plaquettes with hopping $t$ and on-site r epulsion $U$ coupled by an inter-plaquette hopping $t leq t$. Superconductivity in this geometry has previously been studied by a variety of analytic and numeric methods, with differing conclusions concerning whether the pairing correlations and transition temperature are raised near half-filling by the inhomogeneous hopping or not. For $U/t=4$, DQMC indicates an optimal $t/t approx 0.4$ at which the pairing vertex is most attractive. The optimal $t/t$ increases with $U/t$. We then contrast our results for this plaquette model with a Hamiltonian which instead involves a regular pattern of site energies whose large site energy limit is the three band CuO$_2$ model; we show that there the inhomogeneity rapidly, and monotonically, suppresses pairing.
127 - R. Mondaini , T. Ying , T. Paiva 2012
Striped phases, in which spin, charge, and pairing correlations vary inhomogeneously in the CuO_2 planes, are a known experimental feature of cuprate superconductors, and are also found in a variety of numerical treatments of the two dimensional Hubb ard Hamiltonian. In this paper we use determinant Quantum Monte Carlo to show that if a stripe density pattern is imposed on the model, the d-wave pairing vertex is significantly enhanced. We attribute this enhancement to an increase in antiferromagnetic order which is caused by the appearence of more nearly half-filled regions when the doped holes are confined to the stripes. We also observe a pi-phase shift in the magnetic order.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا