ترغب بنشر مسار تعليمي؟ اضغط هنا

147 - M. Marconi , R. Molinaro , G. Bono 2013
We performed a new and accurate fit of light and radial velocity curves of the Large Magellanic Cloud (LMC) Cepheid --OGLE-LMC-CEP-0227-- belonging to a detached double-lined eclipsing binary system. We computed several sets of nonlinear, convective models covering a broad range in stellar mass, effective temperature and in chemical composition. The comparison between theory and observations indicates that current theoretical framework accounts for luminosity --V and I band-- and radial velocity variations over the entire pulsation cycle. Predicted pulsation mass --M=4.14+-0.06 Mo-- and mean effective temperature --Te=6100+-50 K-- do agree with observed estimates with an accuracy better than 1 sigma. The same outcome applies, on average, to the luminosity amplitudes and to the mean radius. We find that the best fit solution requires a chemical composition that is more metal--poor than typical LMC Cepheids (Z=0.004 vs 0.008) and slightly helium enhanced (Y=0.27 vs 0.25), but the sensitivity to He abundance is quite limited. Finally, the best fit model reddening --E(V-I)=0.171+-0.015 mag-- and the true distance modulus corrected for the barycenter of the LMC --mu_{0,LMC}=18.50+-0.02+-0.10 (syst) mag--, agree quite well with similar estimates in the recent literature.
We used Optical, Near Infrared photometry and radial velocity data for a sample of 11 Cepheids belonging to the young LMC blue populous cluster NGC 1866 to estimate their radii and distances on the basis of the CORS Baade-Wesselink method. This techn ique, based on an accurate calibration of the surface brightness as a function of (U-B), (V-K) colors, allows us to estimate, simultaneously, the linear radius and the angular diameter of Cepheid variables, and consequently to derive their distance. A rigorous error estimate on radius and distances was derived by using Monte Carlo simulations. Our analysis gives a distance modulus for NGC 1866 of 18.51+/-0.03 mag, which is in agreement with several independent results.
The dark matter content of early,- type galaxies (ETGs) is a hotly debated topic with contrasting results arguing in favour or against the presence of significant dark mass within the effective radius and the change with luminosity and mass. In order to address this question, we investigate here the global mass - to - light ratio $Upsilon(r) = M(r)/L(r)$ of a sample of 21 lenses observed within the Sloan Lens ACS (SLACS) survey. We follow the usual approach of modeling the galaxy as a two component systems, but we use a phenomenological ansatz for $Upsilon(r)$, proposed by some of us in Tortora et al. (2007), able to smoothly interpolate between constant $M/L$ models and a wide class of dark matter haloes. The resulting galaxy model is then fitted to the data on the Einstein radius and velocity dispersion. Our phenomenological model turns out to be in well agreement with the data suggesting the presence of massive dark matter haloes in order to explain the lensing and dynamics properties of the SLACS lenses. According to the values of the dark matter mass fraction, we argue that the halo may play a significant role in the inner regions probed by the data, but such a conclusion strongly depends on the adopted initial mass function of the stellar population. Finally, we find that the dark matter mass fraction within $R_{eff}$ scales with both the total luminosity and stellar mass in such a way that more luminous (and hence more massive) galaxies have a larger dark matter content.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا