ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - C. Sayrin , C. Junge , R. Mitsch 2015
Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined phot ons thus have chiral character. Here, we employ this to demonstrate nonreciprocal transmission of light at the single-photon level through a silica nanofibre in two experimental schemes. We either use an ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided mode or a single spin-polarised atom strongly coupled to the nanofibre via a whispering-gallery-mode resonator. We simultaneously achieve high optical isolation and high forward transmission. Both are controlled by the internal atomic state. The resulting optical diode is the first example of a new class of nonreciprocal nanophotonic devices which exploit the chirality of confined photons and which are, in principle, suitable for quantum information processing and future quantum optical networks.
Optical waveguides in the form of glass fibers are the backbone of global telecommunication networks. In such optical fibers, the light is guided over long distances by continuous total internal reflection which occurs at the interface between the fi ber core with a higher refractive index and the lower index cladding. Although this mechanism ensures that no light escapes from the waveguide, it gives rise to an evanescent field in the cladding. While this field is protected from interacting with the environment in standard optical fibers, it is routinely employed in air- or vacuum-clad fibers in order to efficiently couple light fields to optical components or emitters using, e.g., tapered optical fiber couplers. Remarkably, the strong confinement imposed by the latter can lead to significant coupling of the lights spin and orbital angular momentum. Taking advantage of this effect, we demonstrate the controlled directional spontaneous emission of light by quantum emitters into a sub-wavelength-diameter waveguide. The effect is investigated in a paradigmatic setting, comprising cesium atoms which are located in the vicinity of a vacuum-clad silica nanofiber. We experimentally observe an asymmetry higher than 10:1 in the emission rates into the counterpropagating fundamental guided modes of the nanofiber. Moreover, we demonstrate that this asymmetry can be tailored by state preparation and suitable excitation of the quantum emitters. We expect our results to have important implications for research in nanophotonics and quantum optics and for implementations of integrated optical signal processing in the classical as well as in the quantum regime.
117 - D. Reitz , C. Sayrin , R. Mitsch 2013
We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Rams ey fringes as well as spin echo signals and infer a reversible dephasing time $T_2^ast=0.6$ ms and an irreversible dephasing time $T_2^prime=3.7$ ms. By theoretically modelling the signals, we find that, for our experimental parameters, $T_2^ast$ and $T_2^prime$ are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.
We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonan t probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of $sim$,1,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا