ترغب بنشر مسار تعليمي؟ اضغط هنا

We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative p otential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Due to the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems.
Building on the recent experimental achievements obtained with scanning electron microscopy on ultracold atoms, we study one-dimensional Bose gases in the crossover between the weakly (quasi-condensate) and the strongly interacting (Tonks-Girardeau) regime. We measure the temporal two-particle correlation function and compare it with calculations performed using the Time Evolving Block Decimation algorithm. More pronounced antibunching is observed when entering the more strongly interacting regime. Even though this mimics the onset of a fermionic behavior, we highlight that the exact and simple duality between 1D bosons and fermions does not hold when such dynamical response is probed. The onset of fermionization is also reflected in the density distribution, which we measure emph{in situ} to extract the relevant parameters and to identify the different regimes. Our results show agreement between experiment and theory and give new insight into the dynamics of strongly correlated many-body systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا