ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The INTEGRAL observatory operating in a hard X-ray/gamma domain has gathered a large observational data set over nine years starting in 2003. Most of the observing time was dedicated to the Galactic source population study, making possible t he deepest Galactic survey in hard X-rays ever compiled. Aims. We aim to perform a Galactic survey that can be used as the basis of Galactic source population studies, and perform mapping of the Milky Way in hard X-rays over the maximum exposure available at |b|<17.5 deg. Methods. We used sky reconstruction algorithms especially developed for the high quality imaging of INTEGRAL/IBIS data. Results. We present sky images, sensitivity maps, and catalogs of detected sources in the three energy bands 17-60, 17-35, and 35-80 keV in the Galactic plane at |b|<17.5 deg. The total number of sources in the reference 17-60 keV band includes 402 objects exceeding a 4.7 sigma detection threshold on the nine-year time-averaged map. Among the identified sources with known and tentatively identified natures, 253 are Galactic objects (108 low-mass X-ray binaries, 82 high-mass X-ray binaries, 36 cataclysmic variables, and 27 are of other types), and 115 are extragalactic objects, including 112 active galactic nuclei (AGNs) and 3 galaxy clusters. The sample of Galactic sources with S/N>4.7 sigma has an identification completeness of ~92%, which is valuable for population studies. Since the survey is based on the nine-year sky maps, it is optimized for persistent sources and may be biased against finding transients.
We present results of a study of the Galactic ridge X-ray emission (GRXE) in hard X-rays with the IBIS telescope on board INTEGRAL in the region near the Galactic Anticenter (GA) at l=155 deg. We assumed a conservative 2 sigma upper limit on the flux from the GA in the 25-60 keV energy band of 1.25E-10 erg/s/cm^2 (12.8 mCrab) per IBIS field of view, or 6.6E-12 erg/s/cm^2 (0.7 mCrab) per degree longitude in the 135 deg. < l < 175 deg. region. This upper limit exceeds the expected GRXE intensity in the GA direction by an order of magnitude, given the near-infrared (NIR) surface brightness of the Milky Way in this region and the standard hard X-ray-to-NIR intensity ratio for the GRXE, assuming stellar origin. Based on the CGRO/EGRET surface brightness of the Galaxy above 100 MeV as a tracer of the cosmic-ray (CR) induced gamma-ray background, the expected GRXE flux in GA exceeds the measured 2 sigma upper limit by a factor of 4. Therefore, the non-detection of hard X-ray emission from the GA does not contradict the stellar nature of the GRXE, but is inconsistent with CR origin.
This paper is the second in a series devoted to the hard X-ray (17-60 keV) whole sky survey performed by the INTEGRAL observatory over seven years. Here we present a catalog of detected sources which includes 521 objects, 449 of which exceed a 5 sigm a detection threshold on the time-averaged map of the sky, and 53 were detected in various subsamples of exposures. Among the identified sources with known and suspected nature, 262 are Galactic (101 low-mass X-ray binaries, 95 high-mass X-ray binaries, 36 cataclysmic variables, and 30 of other types) and 219 are extragalactic, including 214 active galactic nuclei (AGNs), 4 galaxy clusters, and galaxy ESO 389-G 002. The extragalactic (|b|>5 deg) and Galactic (|b|<5 deg) persistently detected source samples are of high identification completeness (respectively ~96% and ~94%) and valuable for population studies.
This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvemen ts are related to the suppression of systematic effects which strongly limit sensitivity in the region of the Galactic Plane (GP), especially in the crowded field of the Galactic Center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic Ridge X-ray Emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7E-12 erg/s/cm2 ~0.26 mCrab in the 17-60 keV band at a 5 sigma detection level. The survey covers 90% of the sky down to the flux limit of 6.2E-11 erg/s/cm2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6E-12 erg/s/cm2 (~0.60 mCrab).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا