ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an XMM-Newton observation of the highly polarized low-surface brightness supernova remnant G107.5-1.5, discovered with the Canadian Galactic Plane Survey (CGPS). We do not detect diffuse X-ray emission from the SNR and set an upper limit o n the surface brightness of ~2 x 10^30 erg arcmin^-2 s^-1, at an assumed distance of 1.1 kpc. We found eight bright point sources in the field, including the ROSAT source 1RXS J225203.8+574249 near the centre of the radio shell. Spectroscopic analysis of some of the embedded point sources, including the ROSAT source, has been performed, and all eight sources are most likely ruled out as the associated neutron star, primarily due to counterpart bright stars in optical and infrared bands. Timing analysis of the bright point sources yielded no significant evidence for pulsations, but, due to the timing resolution, only a small part of the frequency space could be searched. An additional ten fainter point sources were identified in the vicinity of the SNR. Further X-ray observation of these and the region in the vicinity of the radio shell may be warranted.
Cygnus X is one of the most complex areas in the sky. This complicates interpretation, but also creates the opportunity to investigate accretion into molecular clouds and many subsequent stages of star formation, all within one small field of view. U nderstanding large complexes like Cygnus X is the key to understanding the dominant role that massive star complexes play in galaxies across the Universe. The main goal of this study is to establish feasibility of a high-resolution CO survey of the entire Cygnus X region by observing part of it as a Pathfinder, and to evaluate the survey as a tool for investigating the star-formation process. A 2x4 degree area of the Cygnus X region has been mapped in the 12CO(3-2) line at an angular resolution of 15 and a velocity resolution of ~0.4km/s using HARP-B and ACSIS on the James Clerk Maxwell Telescope. The star formation process is heavily connected to the life-cycle of the molecular material in the interstellar medium. The high critical density of the 12CO(3-2) transition reveals clouds in key stages of molecule formation, and shows processes that turn a molecular cloud into a star. We observed ~15% of Cygnus X, and demonstrated that a full survey would be feasible and rewarding. We detected three distinct layers of 12CO(3-2) emission, related to the Cygnus Rift (500-800 pc), to W75N (1-1.8 kpc), and to DR21 (1.5-2.5 kpc). Within the Cygnus Rift, HI self-absorption features are tightly correlated with faint diffuse CO emission, while HISA features in the DR21 layer are mostly unrelated to any CO emission. 47 molecular outflows were detected in the Pathfinder, 27 of them previously unknown. Sequentially triggered star formation is a widespread phenomenon.
We present spectropolarimetric radio images of the supernova remnant (SNR) G296.5+10.0 at frequencies near 1.4 GHz, observed with the Australia Telescope Compact Array. By applying rotation measure (RM) synthesis to the data, a pixel-by-pixel map of Faraday rotation has been produced for the entire remnant. We find G296.5+10.0 to have a highly ordered RM structure, with mainly positive RMs (mean RM of +28 rad/m**2) on the eastern side and negative RMs (mean RM of -14 rad/m**2) on the western side, indicating a magnetic field which is directed away from us on one side and toward us on the other. We consider several possible mechanisms for creating the observed RM pattern. Neither Faraday rotation in foreground interstellar gas nor in a homogeneous ambient medium swept up by the SNR shell can easily explain the magnitude and sign of the observed RM pattern. Instead, we propose that the observed RMs are the imprint of an azimuthal magnetic field in the stellar wind of the progenitor star. Specifically, we calculate that a swept-up magnetized wind from a red supergiant can produce RMs of the observed magnitude, while the azimuthal pattern of the magnetic field at large distances from the star naturally produces the anti-symmetric RM pattern observed. Expansion into such a wind can possibly also account for the striking bilateral symmetry of the SNRs radio and X-ray morphologies.
We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100-m Radio Telescope. Removal of flux density contributions from a superimposed ion{H}{2} region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index ${alpha}={-0.45 pm 0.20}$ below the break and ${alpha}={-0.87 pm 0.10}$ above it (${S}_ u propto{ u^{alpha}}$). The spectral break is more than three times lower in frequency than the lowest break detected in any other PWN. The break in the spectrum is likely the result of synchrotron cooling, and DA 495, at an age of $sim$20,000 yr, may have evolved from an object similar to the Vela X nebula, with a similarly energetic pulsar. We find a magnetic field of $sim$1.3 mG inside the nebula. After correcting for the resulting high internal rotation measure, the magnetic field structure is quite simple, resembling the inner part of a dipole field projected onto the plane of the sky, although a toroidal component is likely also present. The dipole field axis, which should be parallel to the spin axis of the putative pulsar, lies at an angle of ${sim}50degr$ east of the North Celestial Pole and is pointing away from us towards the south-west. The upper limit for the radio surface brightness of any shell-type supernova remnant emission around DA 495 is $Sigma_{1 GHz} sim 5.4 times 10^{-23}$ OAWatt m$^{-2}$ Hz$^{-1}$ sr$^{-1}$ (assuming a radio spectral index of $alpha = -0.5$), lower than the faintest shell-type remnant known to date.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا