ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from Aug 2013 through Feb 2014. DES-SN is a search for transients in w hich ten 3-deg^2 fields are repeatedly observed in the g,r,i,z passbands with a cadence of about 1 week. The observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernova (SN Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions are to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are 130 detections per deg^2 per observation in each band, of which only 25% are artifacts. Of the 7500 transients discovered by DES-SN in its first observing season, each requiring a detection on at least 2 separate nights, Monte Carlo simulations predict that 27% are expected to be supernova. Another 30% of the transients are artifacts, and most of the remaining transients are AGN and variable stars. Fake SNe Ia are overlaid onto the images to rigorously evaluate detection efficiencies, and to understand the DiffImg performance. The DiffImg efficiency measured with fake SNe agrees well with expectations from a Monte Carlo simulation that uses analytical calculations of the fluxes and their uncertainties. In our 8 shallow fields with single-epoch 50% completeness depth 23.5, the SN Ia efficiency falls to 1/2 at redshift z 0.7, in our 2 deep fields with mag-depth 24.5, the efficiency falls to 1/2 at z 1.1.
226 - J. Mosher , J. Guy , R. Kessler 2014
We use simulated SN Ia samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systema tic biases in SN Ia distance measurements, and the bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: 120 low-redshift (z < 0.1) SNe Ia, 255 SDSS SNe Ia (z < 0.4), and 290 SNLS SNe Ia (z <= 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (winput - wrecovered) ranging from -0.005 +/- 0.012 to -0.024 +/- 0.010. These biases are indistinguishable from each other within uncertainty; the average bias on w is -0.014 +/- 0.007.
70 - M. Betoule , R. Kessler , J. Guy 2014
We present cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The data set includes several low-redshift samples (z<0.1), all 3 seasons from the SDSS-II (0.05 < z < 0.4), and 3 years from SNLS (0.2 <z < 1) and totals totc spectroscopically confirmed type Ia supernovae with high quality light curves. We have followed the methods and assumptions of the SNLS 3-year data analysis except for the following important improvements: 1) the addition of the full SDSS-II spectroscopically-confirmed SN Ia sample in both the training of the SALT2 light curve model and in the Hubble diagram analysis ( sdssc SNe), 2) inter-calibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis, and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN Ia light-curves. We produce recalibrated SN Ia light-curves and associated distances for the SDSS-II and SNLS samples. The large SDSS-II sample provides an effective, independent, low-z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low-z SN sample. For a flat LCDM cosmology we find Omega_m=0.295+-0.034 (stat+sys), a value consistent with the most recent CMB measurement from the Planck and WMAP experiments. Our result is 1.8sigma (stat+sys) different than the previously published result of SNLS 3-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark-energy equation of state parameter w=-1.018+-0.057 (stat+sys) for a flat universe. Adding BAO distance measurements gives similar constraints: w=-1.027+-0.055.
We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pai rs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 square degree search area in the griz filter set. We forecast 1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05<z<1.2, and 2) that the increased red efficiency of the DES camera will significantly improve high-redshift color measurements. The redshift of each supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.
212 - J. P. Bernstein 2009
We present simulations for the Dark Energy Survey (DES) using a new code suite (SNANA) that generates realistic supernova light curves accounting for atmospheric seeing conditions and intrinsic supernova luminosity variations using MLCS2k2 or SALT2 m odels. Errors include stat-noise from photo-statistics and sky noise. We applied SNANA to simulate DES supernova observations and employed an MLCS-based fitter to obtain the distance modulus for each simulated light curve. We harnessed the light curves in order to study selection biases for high-redshift supernovae and to constrain the optimal DES observing strategy using the Dark Energy Task Force figure of merit.
We present a measurement of the rate of type Ia supernovae (SNe Ia) from the first of three seasons of data from the SDSS-II Supernova Survey. For this measurement, we include 17 SNe Ia at redshift $zle0.12$. Assuming a flat cosmology with $Omega_m = 0.3=1-Omega_Lambda$, we find a volumetric SN Ia rate of $[2.93^{+0.17}_{-0.04}({rm systematic})^{+0.90}_{-0.71}({rm statistical})] times 10^{-5} {rm SNe} {rm Mpc}^{-3} h_{70}^3 {rm year}^{-1}$, at a volume-weighted mean redshift of 0.09. This result is consistent with previous measurements of the SN Ia rate in a similar redshift range. The systematic errors are well controlled, resulting in the most precise measurement of the SN Ia rate in this redshift range. We use a maximum likelihood method to fit SN rate models to the SDSS-II Supernova Survey data in combination with other rate measurements, thereby constraining models for the redshift-evolution of the SN Ia rate. Fitting the combined data to a simple power-law evolution of the volumetric SN Ia rate, $r_V propto (1+z)^{beta}$, we obtain a value of $beta = 1.5 pm 0.6$, i.e. the SN Ia rate is determined to be an increasing function of redshift at the $sim 2.5 sigma$ level. Fitting the results to a model in which the volumetric SN rate, $r_V=Arho(t)+Bdot rho(t)$, where $rho(t)$ is the stellar mass density and $dot rho(t)$ is the star formation rate, we find $A = (2.8 pm 1.2) times 10^{-14} mathrm{SNe} mathrm{M}_{sun}^{-1} mathrm{year}^{-1}$, $B = (9.3^{+3.4}_{-3.1})times 10^{-4} mathrm{SNe} mathrm{M}_{sun}^{-1}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا