ترغب بنشر مسار تعليمي؟ اضغط هنا

When modelling an ionised plasma, all spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum. Until now no data set exi sts that would meet these needs completely. We have therefore produced a table of relativistic Gaunt factors over a much wider range of parameter space than has ever been produced before. We present tables of the thermally averaged Gaunt factor covering the range log10(gamma^2) = -6 to 10 and log10(u) = -16 to 13 for all atomic numbers Z = 1 through 36. The data were calculated using the relativistic Bethe-Heitler-Elwert (BHE) approximation and were subsequently merged with accurate non-relativistic results in those parts of the parameter space where the BHE approximation is not valid. These data will be incorporated in the next major release of the spectral synthesis code Cloudy. We also produced tables of the frequency integrated Gaunt factor covering the parameter space log10(gamma^2) = -6 to 10 for all values of Z between 1 and 36. All the data presented in this paper are available online.
Modern spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum emitted by an ionized plasma. Until now no set of data ex ists that would meet this need in a fully satisfactory way. We have therefore undertaken to produce a table of very accurate non-relativistic Gaunt factors over a much wider range of parameters than has ever been produced before. We first produced a table of non-averaged Gaunt factors, covering the parameter space log10(epsilon_i) = -20 to +10 and log10(w) = -30 to +25. We then continued to produce a table of thermally averaged Gaunt factors covering the parameter space log10(gamma^2) = -6 to +10 and log10(u) = -16 to +13. Finally we produced a table of the frequency integrated Gaunt factor covering the parameter space log10(gamma^2) = -6 to +10. All the data presented in this paper are available online.
We compare the accuracy of various methods for determining the transfer of the diffuse Lyman continuum in HII regions, by comparing them with a high-resolution discrete-ordinate integration. We use these results to suggest how, in multidimensional dy namical simulations, the diffuse field may be treated with acceptable accuracy without requiring detailed transport solutions. The angular distribution of the diffuse field derived from the numerical integration provides insight into the likely effects of the diffuse field for various material distributions.
The hydrogen ionization and dissociation front around an ultraviolet radiation source should merge when the ratio of ionizing photon flux to gas density is sufficiently low and the spectrum is sufficiently hard. This regime is particularly relevant t o the molecular knots that are commonly found in evolved planetary nebulae, such as the Helix Nebula, where traditional models of photodissociation regions have proved unable to explain the high observed luminosity in H_2 lines. In this paper we present results for the structure and steady-state dynamics of such advection-dominated merged fronts, calculated using the Cloudy plasma/molecular physics code. We find that the principal destruction processes for H_2 are photoionization by extreme ultraviolet radiation and charge exchange reactions with protons, both of which form H_2^+, which rapidly combines with free electrons to undergo dissociative recombination. Advection moves the dissociation front to lower column densities than in the static case, which vastly increases the heating in the partially molecular gas due to photoionization of He^0, H_2, and H^0. This causes a significant fraction of the incident bolometric flux to be re-radiated as thermally excited infrared H_2 lines, with the lower excitation pure rotational lines arising in 1000 K gas and higher excitation H_2 lines arising in 2000 K gas, as is required to explain the H_2 spectrum of the Helix cometary knots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا