ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the off-shell mixing and renormalization of flavor-diagonal dimension-5 T- and P-odd operators involving quarks, gluons, and photons, including quark electric dipole and chromo-electric dipole operators. We present the renormalization matrix to one-loop in the $bar{rm MS}$ scheme. We also provide a definition of the quark chromo-electric dipole operator in a regularization-independent momentum-subtraction scheme suitable for non-perturbative lattice calculations and present the matching coefficients with the $bar{rm MS}$ scheme to one-loop in perturbation theory, using both the naive dimensional regularization and t Hooft-Veltman prescriptions for $gamma_5$.
We present a large X-ray selected serendipitous cluster survey based on a novel joint analysis of archival Chandra and XMM-Newton data. The survey provides enough depth to reach clusters of flux of $approx 10^{-14} {ergs} {cm}^{-2} {s}^{-1}$ near $z$ $approx$ 1 and simultaneously a large enough sample to find evidence for the strong evolution of clusters expected from structure formation theory. We detected a total of 723 clusters of which 462 are newly discovered clusters with greater than 6$sigma$ significance. In addition, we also detect and measure 261 previously-known clusters and groups that can be used to calibrate the survey. The survey exploits a technique which combines the exquisite Chandra imaging quality with the high throughput of the XMM-Newton telescopes using overlapping survey regions. A large fraction of the contamination from AGN point sources is mitigated by using this technique. This results in a higher sensitivity for finding clusters of galaxies with relatively few photons and a large part of our survey has a flux sensitivity between $10^{-14}$ and $10^{-15} {ergs} {cm}^{-2} {s}^{-1}$. The survey covers 41.2 square degrees of overlapping Chandra and XMM-Newton fields and 122.2 square degrees of non-overlapping Chandra data. We measure the log N-log S distribution and fit it with a redshift-dependent model characterized by a luminosity distribution proportional to $e^{-frac{z}{z_0}}$. We find that $z_0$ to be in the range 0.7 to 1.3, indicative of rapid cluster evolution, as expected for cosmic structure formation using parameters appropriate to the concordance cosmological model.
To study the dynamics of coronal holes and the role of waves in the acceleration of the solar wind, spectral observations were performed over polar coronal hole regions with the SUMER spectrometer on SoHO and the EIS spectrometer on Hinode. Using the se observations, we aim to detect the presence of propagating waves in the corona and to study their properties. The observations analysed here consist of SUMER spectra of the Ne VIII 770 A line (T = 0.6 MK) and EIS slot images in the Fe XII 195 A line (T = 1.3 MK). Using the wavelet technique, we study line radiance oscillations at different heights from the limb in the polar coronal hole regions. We detect the presence of long period oscillations with periods of 10 to 30 min in polar coronal holes. The oscillations have an amplitude of a few percent in radiance and are not detectable in line-of-sight velocity. From the time distance maps we find evidence for propagating velocities from 75 km/s (Ne VIII) to 125 km/s (Fe XII). These velocities are subsonic and roughly in the same ratio as the respective sound speeds. We interpret the observed propagating oscillations in terms of slow magneto-acoustic waves. These waves can be important for the acceleration of the fast solar wind.
We built modelled spectra of stellar population at high resolution and with variable alpha-elements enhancements. Analysing spectra of Galactic globular clusters we show that it is possible to derive reliably and efficiently [Mg/Fe] using spectra int egrated along the line-of-sight. These detailed measurements open perspectives for investigating the enrichment process on galaxies and star clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا