ترغب بنشر مسار تعليمي؟ اضغط هنا

This is the second paper of two reporting results from a study of the HI content and stellar properties of nearby galaxies detected by the Arecibo Legacy Fast ALFA blind 21-cm line survey and the Sloan Digital Sky Survey in a 2160 deg^2 region covere d by both surveys. We apply strategies of multivariate data analysis to a complete HI flux-limited subset of 1624 objects extracted from the control sample of HI emitters assembled by Toribio et al. (2011a) in order to: i) investigate the correlation structure of the space defined by an extensive set of observables describing gas-rich systems; ii) identify the intrinsic parameters that best define their HI content; and iii) explore the scaling relations arising from the joint distributions of the quantities most strongly correlated with the HI mass. The principal component analysis performed over a set of five galaxy properties reveals that they are strongly interrelated, supporting previous claims that nearby HI emitters show a high degree of correlation. The best predictors for the expected value of MHI are the diameter of the stellar disk, D25r, followed by the total luminosity (both in the r-band), and the maximum rotation speed, while morphological proxies such as color show only a moderately strong correlation with the gaseous content attenuated by observational error. The simplest and most accurate prescription is log(MHI/Msun)= 8.72 + 1.25*log(D25r/kpc). We find a slope of $-8.2 pm 0.5$ for the relation between optical magnitude and log rotation speed, in good agreement with Tully-Fisher studies, and a log slope of $1.55 pm 0.06$ for the HI mass-optical galaxy size relation. Given the homogeneity of the measurements and the completeness of our dataset, the latter outcome suggests that the constancy of the average (hybrid) HI surface density advocated by some authors for the spiral population is a crude approximation.
We report results from a study of the HI content and stellar properties of nearby galaxies detected by the Arecibo Legacy Fast ALFA blind 21-cm line survey and the Sloan Digital Sky Survey in two declination strips covering a total area of 9 hr X 16 deg. Our analysis seeks to assemble a control sample of galaxies suitable for providing absolute measures of the HI content of gaseous objects. From a database of ~15,000 HI detections, we have assembled three samples of gas-rich galaxies expected to show little or no evidence of interaction with their surroundings that could provide adequate HI standards. The most reliable results are obtained with a sample of 5647 sources found in low density environments, as defined by a nearest neighbor approach. The other two samples contain several hundred relatively isolated galaxies each, as determined from standard isolation algorithms. We find that isolated objects are not particularly gas-rich compared to their low-density-environment counterparts, while they suffer from selection bias and span a smaller dynamic range. All this makes them less suitable for defining a reference for HI content. We have explored the optical morphology of gaseous galaxies in quiet environments finding that, within the volume surveyed, the vast majority of them display unequivocal late-type galaxy features. In contrast, bona fide gas-rich early-type systems account only for a negligible fraction of the 21-cm detections. We argue that HI emission provides the most reliable way to determine the morphological population to which a galaxy belongs. We have also observed that the color distribution of flux-limited samples of optically-selected field HI emitters does not vary significantly with increasing distance, while that of non-detections becomes notably redder. This result suggests that the colors and HI masses of gas-rich galaxies cannot be very closely related.
The ALFALFA (Arecibo Legacy Fast ALFA) blind survey is providing a census of HI in galaxies of all types in a range of environments. Here we report on ALFALFA results for Virgo Cluster early-type dwarfs between declinations of 4 and 16 degrees. Less than 2% of the Virgo early-type dwarf population is detected, compared to 70-80% of the Im/BCD dwarf population. Most of the dwarfs detected in HI show evidence for ongoing or recent star formation. Early-type galaxies with HI tend to be located in the outer regions of the cluster and to be brighter. Early-type dwarfs with HI may be undergoing morphological transition due to cluster environmental effects.
We report the discovery of a ~500 kpc HI extension southwest of the Virgo Cluster HI-rich pair NGC 4532/DDO 137, detected as part of the Arecibo Legacy Fast ALFA (ALFALFA) Survey. The feature is the longest and most massive HI tail structure so far f ound in the Virgo Cluster and, at 1.8 Mpc from M87, the most distant from the main concentration of the intracluster medium. The structure is spatially and spectrally separated into two ridges and is defined by diffuse emission and discrete clumps of mass 2.5 - 6.8 x 10**7 solar masses. All emission is blue-shifted with respect to the NGC 4532/DDO 137 pair emission. Including diffuse emission, the structure has a total mass of up to 7 x 10**8 solar masses, equivalent to ~10% of the systems HI mass. Optical R-band imaging finds no counterparts to a level of 26.5 mag arcsec**-2. The characteristics of the structure appear most consistent with a tidal origin.
We suggest to use the observationally measured and theoretically justified correlation between size and rotational velocity of galactic discs as a viable method to select a set of high redshift standard rods which may be used to explore the dark ener gy content of the universe via the classical angular-diameter test. Here we explore a new strategy for an optimal implementation of this test. We propose to use the rotation speed of high redshift galaxies as a standard size indicator and show how high resolution multi-object spectroscopy and ACS/HST high quality spatial images, may be combined to measure the amplitude of the dark energy density parameter, or to constrain the cosmic equation of state parameter for a smooth dark energy component. We evaluate how systematics may affect the proposed tests, and find that a linear standard rod evolution, causing galaxy dimensions to be up to 30% smaller at z=1.5, can be uniquely diagnosed, and will minimally bias the confidence level contours in the [Omega_Q, w] plane. Finally, we show how to derive, without a priori knowing the specific functional form of disc evolution, a cosmology-evolution diagram with which it is possible to establish a mapping between different cosmological models and the amount of galaxy disc/luminosity evolution expected at a given redshift.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا