ترغب بنشر مسار تعليمي؟ اضغط هنا

A sample of 94 narrow line AGN with 0.65<z<1.20 has been selected from the 20k-Bright zCOSMOS galaxy sample by detection of the high-ionization [NeV]3426 line. Taking advantage of the large amount of data available in the COSMOS field, the properties of the [NeV]-selected Type-2 AGN have been investigated, focusing on their host galaxies, X-ray emission, and optical line flux ratios. Finally, the diagnostic developed by Gilli et al. (2010), based on the X-ray to [NeV] luminosity ratio, has been exploited to search for the more heavily obscured AGN. We found that [Ne v]-selected narrow line AGN have Seyfert 2-like optical spectra, although with emission line ratios diluted by a star-forming component. The ACS morphologies and stellar component in the optical spectra indicate a preference for our Type-2 AGN to be hosted in early-spirals with stellar masses greater than 10^(9.5-10)Msun, on average higher than those of the galaxy parent sample. The fraction of galaxies hosting [NeV]-selected obscured AGN increases with the stellar mass, reaching a maximum of about 3% at 2x10^11 Msun. A comparison with other selection techniques at z~1 shows that the detection of the [Ne v] line is an effective method to select AGN in the optical band, in particular the most heavily obscured ones, but can not provide by itself a complete census of AGN2. Finally, the high fraction of [NeV]-selected Type-2 AGN not detected in medium-deep Chandra observations (67%) is suggestive of the inclusion of Compton-thick sources in our sample. The presence of a population of heavily obscured AGN is corroborated by the X-ray to [NeV] ratio; we estimated, by mean of X-ray stacking technique and simulations, that the Compton-thick fraction in our sample of Type-2 AGN is 43+-4%, in good agreement with standard assumptions by the XRB synthesis models.
108 - K. Iwasawa , R. Gilli , C. Vignali 2012
We present results on a search of heavily obscured active galaxies z>1.7 using the rest-frame 9-20 keV excess for X-ray sources detected in the deep XMM-CDFS survey. Out of 176 sources selected with the conservative detection criteria (>8 sigma) in t he first source catalogue of Ranalli et al., 46 objects lie in the redshift range of interest with the median redshift z~2.5. Their typical rest-frame 10-20 keV luminosity is 1e+44 erg/s, as observed. Among optically faint objects that lack spectroscopic redshift, four were found to be strongly absorbed X-ray sources, and the enhanced Fe K emission or absorption features in their X-ray spectra were used to obtain X-ray spectroscopic redshifts. Using the X-ray colour-colour diagram based on the rest-frame 3-5 keV, 5-9 keV, and 9-20 keV bands, seven objects were selected for their 9-20 keV excess and were found to be strongly absorbed X-ray sources with column density of nH > 0.6e+24 cm-2, including two possible Compton thick sources. While they are emitting at quasar luminosity, ~3/4 of the sample objects are found to be absorbed by nH > 1e+22 cm-2. A comparison with local AGN at the matched luminosity suggests an increasing trend of the absorbed source fraction for high-luminosity AGN towards high redshifts.
Models of galaxy evolution assume some connection between the AGN and star formation activity in galaxies. We use the multi-wavelength information of the CDFS to assess this issue. We select the AGNs from the 3Ms XMM-Newton survey and measure the sta r-formation rates of their hosts using data that probe rest-frame wavelengths longward of 20 um. Star-formation rates are obtained from spectral energy distribution fits, identifying and subtracting an AGN component. We divide the star-formation rates by the stellar masses of the hosts to derive specific star-formation rates (sSFR) and find evidence for a positive correlation between the AGN activity (proxied by the X-ray luminosity) and the sSFR for the most active systems with X-ray luminosities exceeding Lx=10^43 erg/s and redshifts z~1. We do not find evidence for such a correlation for lower luminosity systems or those at lower redshifts. We do not find any correlation between the SFR (or the sSFR) and the X-ray absorption derived from high-quality XMM-Newton spectra either, showing that the absorption is likely to be linked to the nuclear region rather than the host, while the star-formation is not nuclear. Comparing the sSFR of the hosts to the characteristic sSFR of star-forming galaxies at the same redshift we find that the AGNs reside mostly in main-sequence and starburst hosts, reflecting the AGN - sSFR connection. Limiting our analysis to the highest X-ray luminosity AGNs (X-ray QSOs with Lx>10^44 erg/s), we find that the highest-redshift QSOs (with z>2) reside predominantly in starburst hosts, with an average sSFR more than double that of the main sequence, and we find a few cases of QSOs at z~1.5 with specific star-formation rates compatible with the main-sequence, or even in the quiescent region. (abridged)
91 - P. Rosati , S. Borgani , R. Gilli 2010
The Wide Field X-Ray Telescope (WFXT) is a medium-class mission designed to be 2-orders-of-magnitude more sensitive than any previous or planned X-ray mission for large area surveys and to match in sensitivity the next generation of wide-area optical , IR and radio surveys. Using an innovative wide-field X-ray optics design, WFXT provides a field of view of 1 square degree (10 times Chandra) with an angular resolution of 5 (Half Energy Width, HEW) nearly constant over the entire field of view, and a large collecting area (up to 1 m^2 at 1 keV, > 10x Chandra) over the 0.1-7 keV band. WFXTs low-Earth orbit also minimizes the particle background. In five years of operation, WFXT will carry out three extragalactic surveys at unprecedented depth and address outstanding questions in astrophysics, cosmology and fundamental physics. In this article, we illustrate the mission concept and the connection between science requirements and mission parameters.
78 - A. Vikhlinin 2009
Sensitive, wide-area X-ray surveys which would be possible with the WFXT will detect huge samples of virialized objects spanning the mass range from sub-groups to the most massive clusters, and extending in redshift to beyond z=2. These samples will be an excellent dataset for carrying out many traditional cosmological tests using the cluster mass function and power spectrum. Uniquely, WFXT will be able not only to detect clusters but also to make detailed X-ray measurements for a large number of clusters and groups right from the survey data. Very high quality measurements of the cluster mass function and spatial correlation over a very wide range of masses, spatial scales, and redshifts, will be useful for expanding the cosmological discovery space, and in particular, in searching for departures from the concordant Lambda-CDM cosmological model. Finding such departures would have far-reaching implications on our understanding of the fundamental physics which governs the Universe.
77 - S. Murray 2009
We discuss the central role played by X-ray studies to reconstruct the past history of formation and evolution of supermassive Black Holes (BHs), and the role they played in shaping the properties of their host galaxies. We shortly review the progres s in this field contributed by the current X-ray and multiwavelength surveys. Then, we focus on the outstanding scientific questions that have been opened by observations carried out in the last years and that represent the legacy of Chandra and XMM, as for X-ray observations, and the legacy of the SDSS, as for wide area surveys: 1) When and how did the first supermassive black holes form? 2) How does cosmic environment regulate nuclear activity (and star formation) across cosmic time? 3) What is the history of nuclear activity in a galaxy lifetime? We show that the most efficient observational strategy to address these questions is to carry out a large-area X-ray survey, reaching a sensitivity comparable to that of deep Chandra and XMM pointings, but extending over several thousands of square degrees. Such a survey can only be carried out with a Wide-Field X-ray Telescope (WFXT) with a high survey speed, due to the combination of large field of view and large effective area, i.e., grasp, and sharp PSF. We emphasize the important synergies that WFXT will have with a number of future groundbased and space telescopes, covering from the radio to the X-ray bands and discuss the immense legacy value that such a mission will have for extragalactic astronomy at large.
475 - R. Gilli , G. Zamorani , T. Miyaji 2008
We study the spatial clustering of 538 X-ray selected AGN in the 2 deg^2 XMM-COSMOS field that are spectroscopically identified to I_{AB}<23 and span the redshift range z=0.2-3.0. The median redshift and luminosity of the sample are z = 0.98 and L_{0 .5-10}=6.3 x 10^{43} erg/s, respectively. A strong clustering signal is detected at ~18sigma level, which is the most significant measurement obtained to date for clustering of X-ray selected AGN. By fitting the projected correlation function w(r_p) with a power law on scales of r_p=0.3-40 Mpc/h, we derive a best fit comoving correlation length of r_0 = 8.6 +- 0.5 Mpc/h and slope of gamma=1.88 +- 0.07 (Poissonian errors; bootstrap errors are about a factor of 2 larger). An excess signal is observed in the range r_p~5-15 Mpc/h, which is due to a large scale structure at z ~ 0.36 containing about 40 AGN. When removing the z ~ 0.36 structure, or computing w(r_p) in a narrower range around the peak of the redshift distribution (e.g. z=0.4-1.6), the correlation length decreases to r_0 ~ 5-6 Mpc/h, which is consistent with that observed for bright optical QSOs at the same redshift. We investigate the clustering properties of obscured and unobscured AGN separately. Within the statistical uncertainties, we do not find evidence that AGN with broad optical lines (BLAGN) cluster differently from AGN without broad optical lines (non-BLAGN). The correlation length measured for XMM-COSMOS AGN at z~1 is similar to that of massive galaxies (stellar mass M_*> 3 x 10^{10} M_sun) at the same redshift. This suggests that AGN at z~1 are preferentially hosted by massive galaxies, as observed both in the local and in the distant (z~2) Universe. (shortened)
368 - M. Brusa 2008
We present a new measurement of the space density of high redshift (3.0<z<4.5), X-ray selected QSOs obtained by exploiting the deep and uniform multiwavelength coverage of the COSMOS survey. We have assembled a statistically large (40 objects), X-ray selected (F_{0.5-2 keV} >10^{-15} cgs), homogeneous sample of z>3 QSOs for which spectroscopic (22) or photometric (18) redshifts are available. We present the optical (color-color diagrams) and X-ray properties, the number counts and space densities of the z>3 X-ray selected quasars population and compare our findings with previous works and model predictions. We find that the optical properties of X-ray selected quasars are not significantly different from those of optically selected samples. There is evidence for substantial X-ray absorption (logN_H>23 cm^{-2}) in about 20% of the sources in the sample. The comoving space density of luminous (L_X >10^{44} erg s^-1) QSOs declines exponentially (by an e--folding per unit redshift) in the z=3.0-4.5 range, with a behavior similar to that observed for optically bright unobscured QSOs selected in large area optical surveys. Prospects for future, large and deep X-ray surveys are also discussed.
72 - A. Comastri 2007
We will briefly discuss the importance of sensitive X-ray observations above 10 keV for a better understanding of the physical mechanisms associated to the Supermassive Black Hole primary emission and to the cosmological evolution of the most obscured Active Galactic Nuclei.
We discuss the abundance of Compton-thick AGN as estimated by the most recent population synthesis models of the cosmic X-ray background. Only a small fraction of these elusive objects have been detected so far, in line with the model expectations. T he advances expected by the broad band detectors on board Suzaku are briefly reviewed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا