ترغب بنشر مسار تعليمي؟ اضغط هنا

The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10^-11 erg cm^-2 s^-1 and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 < Log L(BAT) < 45.31) were selected as tar gets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption and strong Compton reflection; ii) the lack of variability; iii) the buried nature, i.e. the low scattering fraction (<0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density, X-ray luminosity and radio morphology, but shows a strong long-term variability in flux and scattering fraction, consistent with the soft emission being scattered from a distant region (e.g., the narrow emission line region). The sample presents high (>100) X-to-[OIII] luminosity ratios, confirming the [OIII] luminosity to be affected by residual extinction in presence of mild absorption, especially for buried AGN such as 3C 452. Three of our targets are powerful FRII radio galaxies, making them the most luminous and absorbed AGN of the BAT Seyfert survey despite the inversely proportional N_H - L_X relation.
We compare mid-infrared emission-line properties, from high-resolution Spitzer spectra of a hard X-ray (14 -- 195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 micron, [Ne II] 12.81 micron, [Ne III] 15.56 micron and [Ne V] 14.32/24.32 micron, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, however six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compare the mid-infrared emission-lines in the BAT AGNs with those from published studies of ULIRGs, PG QSOs, star-forming galaxies and LINERs. We find that the BAT AGN sample fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] ratios. These line ratios are lower in sources that have been previously classified in the mid-infrared/optical as AGN than those found for the BAT AGN, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. These ratios represent a new emission line diagnostic for distinguishing between AGN and star forming galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا