ترغب بنشر مسار تعليمي؟ اضغط هنا

We report our investigation of the first transiting planet candidate from the YETI project in the young (~4 Myr old) open cluster Trumpler 37. The transit-like signal detected in the lightcurve of the F8V star 2M21385603+5711345 repeats every 1.36489 4+/-0.000015 days, and has a depth of 54.5+/-0.8 mmag in R. Membership to the cluster is supported by its mean radial velocity and location in the color-magnitude diagram, while the Li diagnostic and proper motion are inconclusive in this regard. Follow-up photometric monitoring and adaptive optics imaging allow us to rule out many possible blend scenarios, but our radial-velocity measurements show it to be an eclipsing single-lined spectroscopic binary with a late-type (mid-M) stellar companion, rather than one of planetary nature. The estimated mass of the companion is 0.15-0.44 solar masses. The search for planets around very young stars such as those targeted by the YETI survey remains of critical importance to understand the early stages of planet formation and evolution.
GM Cep in the young (~4 Myr) open cluster Trumpler 37 has been known to be an abrupt variable and to have a circumstellar disk with very active accretion. Our monitoring observations in 2009-2011 revealed the star to show sporadic flare events, each with brightening of < 0.5 mag lasting for days. These brightening events, associated with a color change toward the blue, should originate from an increased accretion activity. Moreover, the star also underwent a brightness drop of ~1 mag lasting for about a month, during which the star became bluer when fainter. Such brightness drops seem to have a recurrence time scale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between grain coagulation and planetesimal formation in a young circumstellar disk.
We present the Young Exoplanet Transit Initiative (YETI), in which we use several 0.2 to 2.6m telescopes around the world to monitor continuously young (< 100 Myr), nearby (< 1 kpc) stellar clusters mainly to detect young transiting planets (and to s tudy other variability phenomena on time-scales from minutes to years). The telescope network enables us to observe the targets continuously for several days in order not to miss any transit. The runs are typically one to two weeks long, about three runs per year per cluster in two or three subsequent years for about ten clusters. There are thousands of stars detectable in each field with several hundred known cluster members, e.g. in the first cluster observed, Tr-37, a typical cluster for the YETI survey, there are at least 469 known young stars detected in YETI data down to R=16.5 mag with sufficient precision of 50 milli-mag rms (5 mmag rms down to R=14.5 mag) to detect transits, so that we can expect at least about one young transiting object in this cluster. If we observe 10 similar clusters, we can expect to detect approximately 10 young transiting planets with radius determinations. The precision given above is for a typical telescope of the YETI network, namely the 60/90-cm Jena telescope (similar brightness limit, namely within +/-1 mag, for the others) so that planetary transits can be detected. For planets with mass and radius determinations, we can calculate the mean density and probe the internal structure. We aim to constrain planet formation models and their time-scales by discovering planets younger than 100 Myr and determining not only their orbital parameters, but also measuring their true masses and radii, which is possible so far only by the transit method. Here, we present an overview and first results. (Abstract shortened)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا