ترغب بنشر مسار تعليمي؟ اضغط هنا

120 - R. Voss , P. Martin , R. Diehl 2012
We study the populations of massive stars in the Carina region and their energetic feedback and ejection of $^{26}$Al. We did a census of the stellar populations in young stellar clusters within a few degrees of the Carina Nebula. For each star we es timated the mass, based on the spectral type and the host cluster age. We used population synthesis to calculate the energetic feedback and ejection of $^{26}$Al from the winds of the massive stars and their supernova explosions. We used 7 years of INTEGRAL observations to measure the $^{26}$Al signal from the region. The INTEGRAL $^{26}$Al signal is not significant with a best-fit value of about 1.5e-5 ph/cm^2/s, approximately half of the published Compton Gamma Ray Observatory (CGRO) result, but in agreement with the latest CGRO estimates. Our analysis of the stellar populations in the young clusters leads to an expected signal of half the observed value, but the results are consistent within 2 sigma. We find that the fraction of $^{26}$Al ejected in Wolf-Rayet winds is high, and the observed signal is unlikely to be caused by $^{26}$Al ejected in supernovae alone, indicating a strong wind ejection of $^{26}$Al. Due to the lack of prominent O stars, regions with ages $gtrsim$10 Myr are often neglected in studies of OB associations. We find that in the Carina region such clusters contribute significantly to the stellar mass and the energetics of the region.
88 - R. Voss , R. Diehl , J.S. Vink 2010
We assemble a census of the most massive stars in Orion, then use stellar isochrones to estimate their masses and ages, and use these results to establish the stellar content of Orions individual OB associations. From this, our new population synthes is code is utilized to derive the history of the emission of UV radiation and kinetic energy of the material ejected by the massive stars, and also follow the ejection of the long-lived radioactive isotopes 26Al and 60Fe. In order to estimate the precision of our method, we compare and contrast three distinct representations of the massive stars. We compare the expected outputs with observations of 26Al gamma-ray signal and the extent of the Eridanus cavity. We find an integrated kinetic energy emitted by the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent with the energy thought to be required to create the Eridanus superbubble. We also find good agreement between our model and the observed 26Al signal, estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion region. Our population synthesis approach is demonstrated for the Orion region to reproduce three different kinds of observable outputs from massive stars in a consistent manner: Kinetic energy as manifested in ISM excavation, ionization as manifested in free-free emission, and nucleosynthesis ejecta as manifested in radioactivity gamma-rays. The good match between our model and the observables does not argue for considerable modifications of mass loss. If clumping effects turn out to be strong, other processes would need to be identified to compensate for their impact on massive-star outputs. Our population synthesis analysis jointly treats kinematic output and the return of radioactive isotopes, which proves a powerful extension of the methodology that constrains feedback from massive stars.
124 - R. Voss , R. Diehl , D.H. Hartmann 2009
We developed a new population synthesis code for groups of massive stars, where we model the emission of different forms of energy and matter from the stars of the association. In particular, the ejection of the two radioactive isotopes 26Al and 60Fe is followed, as well as the emission of hydrogen ionizing photons, and the kinetic energy of the stellar winds and supernova explosions. We investigate various alternative astrophysical inputs and the resulting output sensitivities, especially effects due to the inclusion of rotation in stellar models. As the aim of the code is the application to relatively small populations of massive stars, special care is taken to address their statistical properties. Our code incorporates both analytical statistical methods applicable to small populations, as well as extensive Monte Carlo simulations. We find that the inclusion of rotation in the stellar models has a large impact on the interactions between OB associations and their surrounding interstellar medium. The emission of 26Al in the stellar winds is strongly enhanced, compared to non-rotating models with the same mass-loss prescription. This compensates the recent reductions in the estimates of mass-loss rates of massive stars due to the effects of clumping. Despite the lower mass-loss rates, the power of the winds is actually enhanced for rotating stellar models. The supernova power (kinetic energy of their ejecta) is decreased due to longer lifetimes of rotating stars, and therefore the wind power dominates over supernova power for the first 6 Myr after a burst of star-formation. For populations typical of nearby star-forming regions, the statistical uncertainties are large and clearly non-Gaussian.
81 - W. Wang , M.J. Harris , R. Diehl 2007
Gamma-ray line emission from radioactive decay of 60Fe provides constraints on nucleosynthesis in massive stars and supernovae. The spectrometer SPI on board INTEGRAL has accumulated nearly three years of data on gamma-ray emission from the Galactic plane. We have analyzed these data with suitable instrumental-background models and sky distributions to produce high-resolution spectra of Galactic emission. We detect the gamma-ray lines from 60Fe decay at 1173 and 1333 keV, obtaining an improvement over our earlier measurement of both lines with now 4.9 sigma significance for the combination of the two lines. The average flux per line is (4.4 pm 0.9) times 10^{-5} ph cm^{-2} s^{-1} rad^{-1} for the inner Galaxy region. Deriving the Galactic 26Al gamma-ray line flux with using the same set of observations and analysis method, we determine the flux ratio of 60Fe/26Al gamma-rays as 0.148 pm 0.06. The current theoretical predictions are still consistent with our result.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا