ترغب بنشر مسار تعليمي؟ اضغط هنا

405 - L. Ballo 2014
Although absorbed quasars are extremely important for our understanding of the energetics of the Universe, the main physical parameters of their central engines are still poorly known. In this work we present and study a complete sample of 14 quasars (QSOs) that are absorbed in the X-rays (column density NH>4x10^21 cm-2 and X-ray luminosity L(2-10 keV)>10^44 ergs/s; XQSO2) belonging to the XMM-Newton Bright Serendipitous Survey (XBS). From the analysis of their ultraviolet-to-mid-infrared spectral energy distribution we can separate the nuclear emission from the host galaxy contribution, obtaining a measurement of the fundamental nuclear parameters, like the mass of the central supermassive black hole and the value of Eddington ratio, lambda_Edd. Comparing the properties of XQSO2s with those previously obtained for the X-ray unabsorbed QSOs in the XBS, we do not find any evidence that the two samples are drawn from different populations. In particular, the two samples span the same range in Eddington ratios, up to lambda_Edd=0.5; this implies that our XQSO2s populate the forbidden region in the so-called effective Eddington limit paradigm. A combination of low grain abundance, presence of stars inwards of the absorber, and/or anisotropy of the disk emission, can explain this result.
121 - A. Corral 2011
We present here a detailed X-ray spectral analysis of the AGN belonging to the XMM-Newton bright survey (XBS) that comprises more than 300 AGN up to redshift ~ 2.4. We performed an X-ray analysis following two different approaches: by analyzing indiv idually each AGN X-ray spectrum and by constructing average spectra for different AGN types. From the individual analysis, we find that there seems to be an anti correlation between the spectral index and the sources hard X-ray luminosity, such that the average photon index for the higher luminosity sources (> 10E44 erg/s) is significantly flatter than the average for the lower luminosity sources. We also find that the intrinsic column density distribution agrees with AGN unified schemes, although a number of exceptions are found (3% of the whole sample), which are much more common among optically classified type 2 AGN. We also find that the so-called soft-excess, apart from the intrinsic absorption, constitutes the principal deviation from a power-law shape in AGN X-ray spectra and it clearly displays different characteristics, and likely a different origin, for unabsorbed and absorbed AGN. Regarding the shape of the average spectra, we find that it is best reproduced by a combination of an unabsorbed (absorbed) power law, a narrow Fe Kalpha emission line and a small (large) amount of reflection for unabsorbed (absorbed) sources. We do not significantly detect any relativistic contribution to the line emission and we compute an upper limit for its equivalent width (EW) of 230 eV at the 3 sigma confidence level. Finally, by dividing the type 1 AGN sample into high- and low-luminosity sources, we marginally detect a decrease in the narrow Fe Kalpha line EW and in the amount of reflection as the luminosity increases, the so-called Iwasawa-Taniguchi effect.
395 - G. Ghisellini 2009
We investigate the physical properties of the 10 blazars at redshift greater than 2 detected in the 3-years all sky survey performed by the Burst Alert Telescope (BAT) onboard the Swift satellite. We find that the jets of these blazars are among the most powerful known. Furthermore, the mass of their central black hole, inferred from the optical-UV bump, exceeds a few billions of solar masses, with accretion luminosities being a large fraction of the Eddington one. We compare their properties with those of the brightest blazars of the 3-months survey performed by the Large Area Telescope (LAT) onboard the Fermi satellite. We find that the BAT blazars have more powerful jets, more luminous accretion disks and larger black hole masses than LAT blazars. These findings can be simply understood on the basis of the blazar sequence, that suggests that the most powerful blazars have a spectral energy distribution with a high energy peak at MeV (or even sub-MeV) energies. This implies that the most extreme blazars can be found more efficiently in hard X-rays, rather than in the high energy gamma-ray band. We then discuss the implications of our findings for future missions, such as the New Hard X-ray Mission (NHXM) and especially the Energetic X-ray Imaging Survey Telescope (EXIST) mission which, during its planned 2 years all sky survey, is expected to detect thousands of blazars, with a few of them at z greater than 6.
We discuss here a long Suzaku observation of IRAS 19254-7245 (also known as the Superantennae), one of the brightest and well studied Ultra Luminous Infrared Galaxies in the local Universe. This long observation provided the first detection of IRAS 1 9254-7245 above 10 keV, and measured a 15-30 keV flux of ~5x10^(-12) erg cm^-2 s^-1. The detection above 10 keV has allowed us to unveil, for the first time, the intrinsic luminosity of the AGN hosted in IRAS 19254-7245, which is strongly absorbed (Nh ~ 3x10^(24) cm^-2) and has an intrinsic luminosity in the QSO regime (L(2-10 keV) ~ 3 x 10^(44) erg s^-1). The 2-10 keV spectrum of IRAS 19254-7245 is remarkably hard (Gamma~1.2), and presents a strong iron line (EW ~0.7 keV), clearly suggesting that below 10 keV we are seeing only reprocessed radiation. Since the energy of the Fe K emission is found to be at ~6.7 keV, consistent with He-like Fe, and its EW is too high to be explained in a starburst dominated scenario, we suggest that the 2--10 keV emission of IRAS 19254-7245 is dominated by reflection/scattering from highly ionized matter. Indeed, within this latter scenario we found that the photon index of the illuminating source is Gamma=1.87 (+0.11,-0.28), in excellent agreement with the mean value found for radio quiet unobscured AGN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا