ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a generalization of the inertial coupling (IC) [Usabiaga et al. J. Comp. Phys. 2013] which permits the resolution of radiation forces on small particles with arbitrary acoustic contrast factor. The IC method is based on a Eulerian-Lagrangi an approach: particles move in continuum space while the fluid equations are solved in a regular mesh (here we use the finite volume method). Thermal fluctuations in the fluid stress, important below the micron scale, are also taken into account following the Landau-Lifshitz fluid description. Each particle is described by a minimal cost resolution which consists on a single small kernel (bell-shaped function) concomitant to the particle. The main role of the particle kernel is to interpolate fluid properties and spread particle forces. Here, we extend the kernel functionality to allow for an arbitrary particle compressibility. The particle-fluid force is obtained from an imposed no-slip constraint which enforces similar particle and kernel fluid velocities. This coupling is instantaneous and permits to capture the fast, non-linear effects underlying the radiation forces on particles. Acoustic forces arise either because an excess in particle compressibility (monopolar term) or in mass (dipolar contribution) over the fluid values. Comparison with theoretical expressions show that the present generalization of the IC method correctly reproduces both contributions. Due to its low computational cost, the present method allows for simulations with many particles using a standard Graphical Processor Unit (GPU).
We develop numerical schemes for solving the isothermal compressible and incompressible equations of fluctuating hydrodynamics on a grid with staggered momenta. We develop a second-order accurate spatial discretization of the diffusive, advective and stochastic fluxes that satisfies a discrete fluctuation-dissipation balance, and construct temporal discretizations that are at least second-order accurate in time deterministically and in a weak sense. Specifically, the methods reproduce the correct equilibrium covariances of the fluctuating fields to third (compressible) and second (incompressible) order in the time step, as we verify numerically. We apply our techniques to model recent experimental measurements of giant fluctuations in diffusively mixing fluids in a micro-gravity environment [A. Vailati et. al., Nature Communications 2:290, 2011]. Numerical results for the static spectrum of non-equilibrium concentration fluctuations are in excellent agreement between the compressible and incompressible simulations, and in good agreement with experimental results for all measured wavenumbers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا