ترغب بنشر مسار تعليمي؟ اضغط هنا

Herbig-Haro objects are regions of shocked gas and dust which are produced when collimated outflows from a protostar interact with the surrounding dense gas. They have many similarities to supernova remnants which are interacting with molecular cloud s. 1720-MHz OH masers have been identified towards a number of interacting supernova remnants. Observations and models indicate that these masers are shock excited and are produced behind C-type shocks. If conditions behind the shock fronts of Herbig-Haro objects are similarly able to support 1720-MHz OH masers they could be a useful diagnostic tool for star formation. We therefore searched for 1720-MHz OH maser emission towards a sample of 97 Herbig-Haro objects using the Green Bank radio telescope. We detected 1720-MHz OH lines in emission in 17 of them, but neither their spectral signature nor follow-up observations with the Very Large Array showed any conclusive evidence of maser emission. We conclude that the emission detected from our single-dish observations must be extended and most likely originates from thermal or quasi-thermal excitation processes. We also investigated the properties of Herbig-Haro shocks more closely and conclude that despite the overall similarities to supernova remnants, the conditions required for maser emission, in particular, a sufficient velocity-coherent column density, are not likely to occur in Herbig-Haro objects.
57 - R. Booth , T. Meyer 2011
As partial justification of their framework for iterated belief revision Darwiche and Pearl convincingly argued against Boutiliers natural revision and provided a prototypical revision operator that fits into their scheme. We show that the Darwiche-P earl arguments lead naturally to the acceptance of a smaller class of operators which we refer to as admissible. Admissible revision ensures that the penultimate input is not ignored completely, thereby eliminating natural revision, but includes the Darwiche-Pearl operator, Nayaks lexicographic revision operator, and a newly introduced operator called restrained revision. We demonstrate that restrained revision is the most conservative of admissible revision operators, effecting as few changes as possible, while lexicographic revision is the least conservative, and point out that restrained revision can also be viewed as a composite operator, consisting of natural revision preceded by an application of a backwards revision operator previously studied by Papini. Finally, we propose the establishment of a principled approach for choosing an appropriate revision operator in different contexts and discuss future work.
[Abridged] Observations of molecular gas at all redshifts are critical for measuring the cosmic evolution in molecular gas density and understanding the star-formation history of the Universe. The 12CO molecule (J=1-0 transition = 115.27 GHz) is the best proxy for extragalactic H2, which is the gas reservoir from which star formation occurs, and has been detected out to z~6. Typically, redshifted high-J lines are observed at mm-wavelengths, the most commonly targeted systems exhibiting high SFRs (e.g. submm galaxies), and far-IR-bright QSOs. While the most luminous objects are the most readily observed, detections of more typical galaxies with modest SFRs are essential for completing the picture. ALMA will be revolutionary in terms of increasing the detection rate and pushing the sensitivity limit down to include such galaxies, however the limited FoV when observing at such high frequencies makes it difficult to use ALMA for studies of the large-scale structure traced out by molecular gas in galaxies. This article introduces a strategy for a systematic search for molecular gas during the EoR (z~7 and above), capitalizing on the fact that the J=1-0 transition of 12CO enters the upper bands of cm-wave instruments at high-z. The FoV advantage gained by observing at such frequencies, coupled with modern broadband correlators allows significant cosmological volumes to be probed on reasonable timescales. In this article we present an overview of our future observing programme which has been awarded 6,500 hours as one of the Large Survey Projects for MeerKAT, the forthcoming South African SKA pathfinder instrument. Its large FoV and correlator bandwidth, and high-sensitivity provide unprecedented survey speed for such work. An existing astrophysical simulation is coupled with instrumental considerations to demonstrate the feasibility of such observations and predict detection rates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا