ترغب بنشر مسار تعليمي؟ اضغط هنا

An expression is determined for the mass of the magnet and magnetocaloric material needed for a magnetic refrigerator and these are determined using numerical modeling for both parallel plate and packed sphere bed regenerators as function of temperat ure span and cooling power. As magnetocaloric material Gd or a model material with a constant adiabatic temperature change, representing a infinitely linearly graded refrigeration device, is used. For the magnet a maximum figure of merit magnet or a Halbach cylinder is used. For a cost of $40 and $20 per kg for the magnet and magnetocaloric material, respectively, the cheapest 100 W parallel plate refrigerator with a temperature span of 20 K using Gd and a Halbach magnet has 0.8 kg of magnet, 0.3 kg of Gd and a cost of $35. Using the constant material reduces this cost to $25. A packed sphere bed refrigerator with the constant material costs $7. It is also shown that increasing the operation frequency reduces the cost. Finally, the lowest cost is also found as a function of the cost of the magnet and magnetocaloric material.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا