ترغب بنشر مسار تعليمي؟ اضغط هنا

High quality nanometer-thick (20 nm, 7 nm and 4 nm) epitaxial YIG films have been grown on GGG substrates using pulsed laser deposition. The Gilbert damping coefficient for the 20 nm thick films is 2.3 x 10-4 which is the lowest value reported for su b-micrometric thick films. We demonstrate Inverse spin Hall effect (ISHE) detection of propagating spin waves using Pt. The amplitude and the lineshape of the ISHE voltage correlate well to the increase of the Gilbert damping when decreasing thickness of YIG. Spin Hall effect based loss-compensation experiments have been conducted but no change in the magnetization dynamics could be detected.
We used oxygen ion irradiation to transfer the nanoscale pattern of a porous alumina mask into high- superconducting thin films. This causes a nanoscale spatial modulation of superconductivity and strongly affects the magneto-transport below, which s hows a series of periodic oscillations reminiscent of the Little-Parks effect in superconducting wire networks. This irradiation technique could be extended to other oxide materials in order to induce ordered nanoscale phase segregation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا