ترغب بنشر مسار تعليمي؟ اضغط هنا

361 - R. Barends , L. Lamata , J. Kelly 2015
Simulating quantum physics with a device which itself is quantum mechanical, a notion Richard Feynman originated, would be an unparallelled computational resource. However, the universal quantum simulation of fermionic systems is daunting due to thei r particle statistics, and Feynman left as an open question whether it could be done, because of the need for non-local control. Here, we implement fermionic interactions with digital techniques in a superconducting circuit. Focusing on the Hubbard model, we perform time evolution with constant interactions as well as a dynamic phase transition with up to four fermionic modes encoded in four qubits. The implemented digital approach is universal and allows for the efficient simulation of fermions in arbitrary spatial dimensions. We use in excess of 300 single-qubit and two-qubit gates, and reach global fidelities which are limited by gate errors. This demonstration highlights the feasibility of the digital approach and opens a viable route towards analog-digital quantum simulation of interacting fermions and bosons in large-scale solid state systems.
Quantum computing becomes viable when a quantum state can be preserved from environmentally-induced error. If quantum bits (qubits) are sufficiently reliable, errors are sparse and quantum error correction (QEC) is capable of identifying and correcti ng them. Adding more qubits improves the preservation by guaranteeing increasingly larger clusters of errors will not cause logical failure - a key requirement for large-scale systems. Using QEC to extend the qubit lifetime remains one of the outstanding experimental challenges in quantum computing. Here, we report the protection of classical states from environmental bit-flip errors and demonstrate the suppression of these errors with increasing system size. We use a linear array of nine qubits, which is a natural precursor of the two-dimensional surface code QEC scheme, and track errors as they occur by repeatedly performing projective quantum non-demolition (QND) parity measurements. Relative to a single physical qubit, we reduce the failure rate in retrieving an input state by a factor of 2.7 for five qubits and a factor of 8.5 for nine qubits after eight cycles. Additionally, we tomographically verify preservation of the non-classical Greenberger-Horne-Zeilinger (GHZ) state. The successful suppression of environmentally-induced errors strongly motivates further research into the many exciting challenges associated with building a large-scale superconducting quantum computer.
A precise measurement of dephasing over a range of timescales is critical for improving quantum gates beyond the error correction threshold. We present a metrological tool, based on randomized benchmarking, capable of greatly increasing the precision of Ramsey and spin echo sequences by the repeated but incoherent addition of phase noise. We find our SQUID-based qubit is not limited by $1/f$ flux noise at short timescales, but instead observe a telegraph noise mechanism that is not amenable to study with standard measurement techniques.
We describe the fabrication and measurement of microwave coplanar waveguide resonators with internal quality factors above 10 million at high microwave powers and over 1 million at low powers, with the best low power results approaching 2 million, co rresponding to ~1 photon in the resonator. These quality factors are achieved by controllably producing very smooth and clean interfaces between the resonators aluminum metallization and the underlying single crystal sapphire substrate. Additionally, we describe a method for analyzing the resonator microwave response, with which we can directly determine the internal quality factor and frequency of a resonator embedded in an imperfect measurement circuit.
Losses in superconducting planar resonators are presently assumed to predominantly arise from surface-oxide dissipation, due to experimental losses varying with choice of materials. We model and simulate the magnitude of the loss from interface surfa ces in the resonator, and investigate the dependence on power, resonator geometry, and dimensions. Surprisingly, the dominant surface loss is found to arise from the metal-substrate and substrate-air interfaces. This result will be useful in guiding device optimization, even with conventional materials.
We find that stray infrared light from the 4 K stage in a cryostat can cause significant loss in superconducting resonators and qubits. For devices shielded in only a metal box, we measured resonators with quality factors Q = 10^5 and qubits with ene rgy relaxation times T_1=120 ns, consistent with a stray light-induced quasiparticle density of 170-230 mu m^{-3}. By adding a second black shield at the sample temperature, we found about an order of magnitude improvement in performance and no sensitivity to the 4 K radiation. We also tested various shielding methods, implying a lower limit of Q = 10^8 due to stray light in the light-tight configuration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا