ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data co llected from October 2012 to November 2013 resulted in a total exposure of 6.9$times$10$^5$ GW$_{rm th}$-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six $^{241}$Am-$^{13}$C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of $sin^{2}2theta_{13}$ and $|Delta m^2_{ee}|$ were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave $sin^{2}2theta_{13} = 0.084pm0.005$ and $|Delta m^{2}_{ee}|= (2.42pm0.11) times 10^{-3}$ eV$^2$ in the three-neutrino framework.
A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiments unique configuration of multiple baselines from six 2.9~GW$_{rm th}$ nuclear reactors to six a ntineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the $10^{rm -3}~{rm eV}^{2} < |Delta m_{41}^{2}| < 0.3~{rm eV}^{2}$ range. The relative spectral distortion due to electron antineutrino disappearance was found to be consistent with that of the three-flavor oscillation model. The derived limits on $sin^22theta_{14}$ cover the $10^{-3}~{rm eV}^{2} lesssim |Delta m^{2}_{41}| lesssim 0.1~{rm eV}^{2}$ region, which was largely unexplored.
A new measurement of the $theta_{13}$ mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of $theta_{13}$ measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2.9 GW$_{th}$ reactors, the rate deficit observed at the far hall is interpreted as $sin^22theta_{13}=0.083pm0.018$ in the three-flavor oscillation model. When combined with the gadolinium-capture result from Daya Bay, we obtain $sin^22theta_{13}=0.089pm0.008$ as the final result for the six-antineutrino-detector configuration of the Daya Bay experiment.
Detectors proposed for the International Linear Collider (ILC) incorporate a tungsten sampling calorimeter (`BeamCal) intended to reconstruct showers of electrons, positrons and photons that emerge from the interaction point of the collider with angl es between 5 and 50 milliradians. For the innermost radius of this calorimeter, radiation doses at shower-max are expected to reach 100 MRad per year, primarily due to minimum-ionizing electrons and positrons that arise in the induced electromagnetic showers of e+e- `beamstrahlung pairs produced in the ILC beam-beam interaction. However, radiation damage to calorimeter sensors may be dominated by hadrons induced by nuclear interactions of shower photons, which are much more likely to contribute to the non-ionizing energy loss that has been observed to damage sensors exposed to hadronic radiation. We report here on the results of SLAC Experiment T-506, for which several different types of silicon diode sensors were exposed to doses of radiation induced by showering electrons of energy 3.5-10.6 GeV. By embedding the sensor under irradiation within a tungsten radiator, the exposure incorporated hadronic species that would potentially contribute to the degradation of a sensor mounted in a precision sampling calorimeter. Depending on sensor technology, efficient charge collection was observed for doses as large as 220 MRad.
The Daya Bay experiment measures sin^2 2{theta}_13 using functionally identical antineutrino detectors located at distances of 300 to 2000 meters from the Daya Bay nuclear power complex. Each detector consists of three nested fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to overflow tanks on top of the detector to allow for thermal expansion of the liquid. Antineutrinos are detected through the inverse beta decay reaction on the proton-rich scintillator target. A precise and continuous measurement of the detectors central target mass is achieved by monitoring the the fluid level in the overflow tanks with cameras and ultrasonic and capacitive sensors. In addition, the monitoring system records detector temperature and levelness at multiple positions. This monitoring information allows the precise determination of the detectors effective number of target protons during data taking. We present the design, calibration, installation and in-situ tests of the Daya Bay real-time antineutrino detector monitoring sensors and readout electronics.
This paper describes in detail the acrylic target vessels used to encapsulate the target and gamma catcher regions in the Daya Bay experiments first pair of antineutrino detectors. We give an overview of the design, fabrication, shipping, and install ation of the acrylic target vessels and their liquid overflow tanks. The acrylic quality assurance program and vessel characterization, which measures all geometric, optical, and material properties relevant to { u}e detection at Daya Bay are summarized. This paper is the technical reference for the Daya Bay acrylic vessels and can provide guidance in the design and use of acrylic components in future neutrino or dark matter experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا