ترغب بنشر مسار تعليمي؟ اضغط هنا

L1157-mm powers a molecular outflow that is well-known for its shock-induced chemical activity in several hot-spots. We have studied the molecular emission toward L1157-mm searching for a jet component responsible for these spots. We used the IRAM 30 m telescope to observe the vicinity of L1157-mm in several lines of SiO. The SiO(5-4) and SiO(6-5) spectra toward L1157-mm present blue and red detached components about 45 km/s away from the ambient cloud. These extremely high-velocity (EHV) components are similar to those found in the L1448 and IRAS 04166+2706 outflows, and probably arise from a molecular jet driven by L1157-mm. Observations of off-center positions indicate that the jet is unresolved in SiO(5-4) (<11). The EHV jet seen in SiO probably excites L1157-B1 and the other chemically active spots of the L1157 outflow.
We aimed to map the jets and outflows from the Serpens South star forming region and find an empirical relationship between the magnetic field and outflow orientation. Near-infrared H2 v=1-0 S(1) 2.122{mu}m -line imaging of the sim 30-long filamentar y shaped Serpens South star forming region was carried out. K s broadband imaging of the same region was used for continuum subraction. Candidate driving sources of the mapped jets/outflows are identified from the list of known protostars and young stars in this region, which was derived from studies using recent Spitzer and Herschel telescope observations. 14 Molecular Hydrogen emission-line objects(MHOs) are identified using our continuum-subtracted images. They are found to constitute ten individual flows. Out of these, nine flows are located in the lower-half(southern) part of the Serpens South filament, and one flow is located at the northern tip of the filament. Four flows are driven by well-identified Class 0 protostars, while the remaining six flows are driven by candidate protostars mostly in the Class I stage, based on the Spitzer and Herschel observations. The orientation of the outflows is systematically perpendicular to the direction of the near-infrared polarization vector, recently published in the literature. No significant correlation was observed between the orientation of the flows and the axis of the filamentary cloud.
We completed a search for circumstellar disks around Herbig Be stars using the NRAO Very Large Array (VLA) and the IRAM Plateau de Bure (PdB) interferometers. We present our new VLA and PdBI data for the three objects MWC 297, Z CMa, and LKHa 215. We constructed the SED from near-IR to centimeter wavelengths by adding our millimeter and centimeter data to the available data at other wavelengths, mainly Spitzer images. The entire SED was fitted using a disk+envelope model. In addition, we compiled all the disk millimeter observations in the literature and completed a statistical analysis of all the data. We show that the disk mass is usually only a small percentage (less than 10%) of the mass of the entire envelope in HBe stars. For the disks, there are large source-to-source variations. Two disks in our sample, R Mon and Z CMa, have similar sizes and masses to those found in T Tauri and Herbig Ae stars. The disks around MWC 1080 and MWC 297 are, however, smaller (rout<100 AU). We did not detect the disks towards MWC 137 and LkHa 215 at millimeter wavelengths, which limits the mass and the size of the possible circumstellar disks. A comparison between our data and previous results for T Tauri and Herbig Ae stars indicates that although massive disks (0.1 Msun) are found in young objects (10^4 yr), the masses of the disks around Herbig Be stars are usually 5-10 times lower than those around lower mass stars. We propose that disk photoevaporation is responsible for this behavior. In Herbig Be stars, the UV radiation disperses the gas in the outer disk on a timescale of a few 10^5 yr. Once the outer part of the disk has vanished, the entire gaseous disk is photoevaporated on a very short timescale (10^5 yr) and only a small, dusty disk consisting of large grains remains.
We have carried out observations at millimeter and centimeter wavelengths towards VV Ser using the Plateau de Bure Interferometer and the Very Large Array. This allows us to compute the SED from near infrared to centimeter wavelengths. The modeling o f the full SED has provided insight into the dust properties and a more accurate value of the disk mass. The mass of dust in the disk around VV Ser is found to be about 4 10^(-5) Msun, i.e. 400 times larger than previous estimates. Moreoever, the SED can only be accounted for assuming dust stratification in the vertical direction across the disk. The existence of small grains (0.25--1 micron) in the disk surface is required to explain the emission at near- and mid-infrared wavelengths. The fluxes measured at millimeter wavelengths imply that the dust grains in the midplane have grown up to very large sizes, at least to some centimeters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا