ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Spitzer IRAC and MIPS observations of the star-forming region containing intermediate-mass young stellar object (YSO) AFGL 490. We supplement these data with near-IR 2MASS photometry and with deep SQIID observations off the central high ex tinction region. We have more than doubled the known membership of this region to 57 Class I and 303 Class II YSOs via the combined 1-24 um photometric catalog derived from these data. We construct and analyze the minimum spanning tree of their projected positions, isolating one locally over-dense cluster core containing 219 YSOs (60.8% of the regions members). We find this cluster core to be larger yet less dense than similarly analyzed clusters. Although the structure of this cluster core appears irregular, we demonstrate that the parsec-scale surface densities of both YSOs and gas are correlated with a power law slope of 2.8, as found for other similarly analyzed nearby molecular clouds. We also explore the mass segregation implications of AFGL 490s offset from the center of its core, finding that it has no apparent preferential central position relative to the low-mass members.
We identify protostars in Spitzer surveys of nine star-forming molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. Our diverse cloud sam ple allows us to compare protostar luminosity functions in these varied environments. We combine photometry from 2MASS J, H, and Ks bands and Spitzer IRAC and MIPS 24 micron bands to create 1 - 24 micron spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities (Lbol), we derive a relationship between Lbol, L_MIR (integrated from 1 - 24 microns), and SED slope. Estimations of Lbol for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high mass star forming clouds peak near 1 Lsun and show a tail extending toward luminosities above 100 Lsun. The luminosity functions of the low mass star forming clouds do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 Lsun. Finally, we examine the luminosity functions as a function of the local surface density of YSOs. In the Orion molecular cloud, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models which invoke competitive accretion, although we do not find strong agreement of the high mass star forming clouds with any of the models.
We report the discovery and characterization of a power law correlation between the local surface densities of Spitzer-identified, dusty young stellar objects and the column density of gas (as traced by near-IR extinction) in eight molecular clouds w ithin 1 kpc and with 100 or more known YSOs. This correlation, which appears in data smoothed over size scales of ~1 pc, varies in quality from cloud to cloud; those clouds with tight correlations, MonR2 and Ophiuchus, are fit with power laws of slope 2.67 and 1.87, respectively. The spread in the correlation is attributed primarily to local gas disruption by stars that formed there or to the presence of very young sub-regions at the onset of star formation. We explore the ratio of the number of Class II to Class I sources, a proxy for the star formation age of a region, as a function of gas column density; this analysis reveals a declining Class II to Class I ratio with increasing column density. We show that the observed star-gas correlation is consistent with a star formation law where the star formation rate per area varies with the gas column density squared. We also propose a simple picture of thermal fragmentation of dense gas in an isothermal, self-gravitating layer as an explanation for the power law. Finally, we briefly compare the star gas correlation and its implied star formation law with other recent proposed of star formation laws at similar and larger size scales from nearby star forming regions.
We present a comprehensive analysis of structure in the young, embedded cluster, NGC 1333 using members identified with Spitzer and 2MASS photometry based on their IR-excess emission. In total, 137 members are identified in this way, composed of 39 p rotostars and 98 more evolved pre-main sequence stars with disks. Of the latter class, four are transition/debris disk candidates. The fraction of exposed pre-main sequence stars with disks is 83% +/- 11%, showing that there is a measurable diskless pre-main sequence population. The sources in each of the Class I and Class II evolutionary states are shown to have very different spatial distributions relative to the distribution of the dense gas in their natal cloud. However, the distribution of nearest neighbor spacings among these two groups of sources are found to be quite similar, with a strong peak at spacings of 0.045 pc. Radial and azimuthal density profiles and surface density maps computed from the identified YSOs show that NGC 1333 is elongated and not strongly centrally concentrated, confirming previous claims in the literature. We interpret these new results as signs of a low velocity dispersion, extremely young cluster that is not in virial equilibrium.
We report the discovery of a nearby, embedded cluster of young stellar objects, associated filamentary infrared dark cloud, and 4.5 micron shock emission knots from outflows detected in Spitzer/IRAC mid-infrared imaging of the Serpens-Aquila Rift obt ained as part of the Spitzer Gould Belt Legacy Survey. We also present radial velocity measurements of the region from molecular line observations obtained with the Submillimeter Array (SMA) that suggest the cluster is co-moving with the Serpens Main embedded cluster 3 degrees to the north. We therefore assign it the same distance, 260 pc. The core of the new cluster, which we call Serpens South, is composed of an unusually large fraction of protostars (77%) at high mean surface density (>430 pc^-2) and short median nearest neighbor spacing (3700 AU). We perform basic cluster structure characterization using nearest neighbor surface density mapping of the YSOs and compare our findings to other known clusters with equivalent analyses available in the literature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا