ترغب بنشر مسار تعليمي؟ اضغط هنا

We have studied the magnetization reversal process in FM/AFM bilayer structures through of spin dynamics simulation. It has been observed that the magnetization behavior is different at each branch of the hysteresis loop as well as the exchange-bias behavior. On the descending branch a sudden change of the magnetization is observed while on the ascending branch is observed a bland change of the magnetization. The occurrence of the asymmetry in the hysteresis loop and the variation in the exchange-bias is due to anisotropy which is introduced only in the coupling between ferromagnetic (FM) and antiferromagnetic (AFM) layers.
The phase diagram of the quasi-two-dimensional easy-plane antiferromagnetic model, with a magnetic field applied in the easy plane, is studied using the self-consistent harmonic approximation. We found a linear dependence of the transition temperatur e as a function of the field for large values of the field. Our results are in agreement with experimental data for the spin-1 honeycomb compound BaNi_2V_2O_3
91 - M. Rapini , R. A. Dias , 2010
Ultrathin magnetic films can be modeled as an anisotropic Heisenberg model with long-range dipolar interactions. It is believed that the phase diagram presents three phases: An ordered ferromagnetic phase I, a phase characterized by a change from out -of-plane to in-plane in the magnetization II, and a high-temperature paramagnetic phase III. It is claimed that the border lines from phase I to III and II to III are of second order and from I to II is first order. In the present work we have performed a very careful Monte Carlo simulation of the model. Our results strongly support that the line separating phases II and III is of the BKT type.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا