ترغب بنشر مسار تعليمي؟ اضغط هنا

[abridged] We present multi-epoch high-resolution optical spectroscopy, UV/radio/X-ray imaging, and archival Hubble and Spitzer observations of an intermediate luminosity optical transient recently discovered in the nearby galaxy NGC300. We find that the transient (NGC300 OT2008-1) has a peak absolute magnitude of M_bol~-11.8 mag, intermediate between novae and supernovae, and similar to the recent events M85 OT2006-1 and SN2008S. Our high-resolution spectra, the first for this event, are dominated by intermediate velocity (~200-1000 km/s) hydrogen Balmer lines and CaII emission and absorption lines that point to a complex circumstellar environment, reminiscent of the yellow hypergiant IRC+10420. In particular, we detect broad CaII H&K absorption with an asymmetric red wing extending to ~1000 km/s, indicative of gas infall onto a massive and relatively compact star (blue supergiant or Wolf-Rayet star); an extended red supergiant progenitor is unlikely. The origin of the inflowing gas may be a previous ejection from the progenitor or the wind of a massive binary companion. The low luminosity, intermediate velocities, and overall similarity to a known eruptive star indicate that the event did not result in a complete disruption of the progenitor. We identify the progenitor in archival Spitzer observations, with deep upper limits from Hubble data. The spectral energy distribution points to a dust-enshrouded star with a luminosity of about 6x10^4 L_sun, indicative of a ~10-20 M_sun progenitor (or binary system). This conclusion is in good agreement with our interpretation of the outburst and circumstellar properties. The lack of significant extinction in the transient spectrum indicates that the dust surrounding the progenitor was cleared by the outburst.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا