ترغب بنشر مسار تعليمي؟ اضغط هنا

110 - R. Yang , A. Aryshev , P. Bambade 2021
Beam halo is one of the crucial issues limiting the machine performance and causing radioactivation in high-intensity accelerators. A clear picture of beam-halo formation is of great importance for successful suppression of the undesired beam loss. W e present numerical and experimental studies of transverse and longitudinal halos in the KEK Accelerator Test Facility. The fair accordance between predictions and observations in various conditions indicates that the Touschek scattering is the dominant mechanism forming the horizontal and momentum halos.
Adaptive optics (AO) is a key technology for ground-based optical and infrared astronomy, providing high angular resolution and sensitivity. AO systems employing laser guide stars (LGS) can achieve high sky coverage, but their performance is limited by LGS return flux. We examine the potential of two new approaches that might produce high-intensity atmospheric laser beacons. Amplified spontaneous emission could potentially boost the intensity of beacons produced by conventional resonant excitation of atomic or molecular species in the upper atmosphere. This requires the production of a population inversion in an electronic transition that is optically-thick to stimulated emission. Potential excitation mechanisms include continuous wave pumping, pulsed excitation and plasma generation. Alternatively, a high-power femtosecond pulsed laser could produce a white-light supercontinuum high in the atmosphere. The broad-band emission from such a source could also facilitate the sensing of the tilt component of atmospheric turbulence.
When the theorem of equipartition of energy applies to the vibrational degree of freedom within diatomic molecular gas, the bond length is usually taken as zero so that the theorem is valid. Once the bond length is taken into consideration, calculati ons show that the mean energy of the vibrational heat capacity will significantly deviate from the standard value near the high temperature which breaks down the bond.
81 - M. Corasaniti , R. Yang , K. Sen 2020
The layered van der Waals ferromagnetic Fe$_3$GeTe$_2$ harbours an unconventional interplay between topology and magnetism, leading to a large anomalous Hall conductivity at low temperatures. Here, we investigate the temperature dependence of its cha rge dynamics and reveal that upon entering the ferromagnetic state at $T_C sim 200$ K and further lowering the temperature there is the onset of a gradual spectral weight reshuffling from the mid-infrared range towards far- as well as near-infrared frequencies. This two-fold spectral weight transfer indicates the important role of the Hunds coupling as primary source for electronic correlations and signals an incoherent-coherent crossover at low temperatures. Our findings also convey the electronic environment, based on nodal-line topological states, favouring the large anomalous Hall conductivity.
73 - K.L. Chong , R. Yang , Q. Wang 2020
In the preparation of Cafe Latte, spectacular layer formation can occur between the expresso shot in a glass of milk and the milk itself. Xue et al. (Nat. Commun., vol. 8, 2017, pp. 1-6) showed that the injection velocity of expresso determines the d epth of coffee-milk mixture. After a while when a stable stratification forms in the mixture, the layering process can be modelled as a double diffusive convection system with a stably-stratified coffee-milk mixture cooled from the side. More specifically, we perform (two-dimensional) direct numerical simulations of laterally cooled double diffusive convection for a wide parameter range, where the convective flow is driven by a lateral temperature gradient while stabilized by a vertical concentration gradient. When the thermal driving force dominates over the stabilizing force, the flow behaves like vertical convection in which a large-scale circulation develops. However, with increasing strength of the stabilizing force, a meta-stable layered regime emerges. Initially, several vertically-stacked convection rolls develop, and these well-mixed layers are separated by sharp interfaces with large concentration gradients. The initial thickness of these emerging layers can be estimated by balancing the work exerted by thermal driving and the required potential energy to bring fluid out of its equilibrium position in the stably stratified fluid. In the layered regime, we further observe successive layer merging, and eventually only a single convection roll remains. We elucidate the following merging mechanism: As weakened circulation leads to accumulation of hot fluid adjacent to the hot sidewall, larger buoyancy forces associated with hotter fluid eventually break the layer interface. Then two layers merge into a larger layer, and circulation establishes again within the merged structure.
This paper presents ImagineNet, a tool that uses a novel neural style transfer model to enable end-users and app developers to restyle GUIs using an image of their choice. Former neural style transfer techniques are inadequate for this application be cause they produce GUIs that are illegible and hence nonfunctional. We propose a neural solution by adding a new loss term to the original formulation, which minimizes the squared error in the uncentered cross-covariance of features from different levels in a CNN between the style and output images. ImagineNet retains the details of GUIs, while transferring the colors and textures of the art. We presented GUIs restyled with ImagineNet as well as other style transfer techniques to 50 evaluators and all preferred those of ImagineNet. We show how ImagineNet can be used to restyle (1) the graphical assets of an app, (2) an app with user-supplied content, and (3) an app with dynamically generated GUIs.
90 - R. Yang , J. W. Huang , N. Zaki 2019
We report the temperature-dependent optical conductivity and ARPES studies of the iron-based superconductor (SC) Sr$_{0.67}$Na$_{0.33}$Fe$_2$As$_2$ in the high-temperature tetragonal paramagnetic phase; below the structural and magnetic transitions a t $T_{rm N}simeq$125 K in the orthorhombic spin-density-wave (SDW)-like phase, and $T_rsimeq$42 K in the reentrant tetragonal double-Q magnetic phase where both charge and SDW order exist; and below the SC transition at $T_csimeq$10 K. The free-carrier component in the optical conductivity is described by two Drude contributions; one strong and broad, the other weak and narrow. The broad Drude component decreases dramatically below $T_{rm N}$ and $T_r$, with much of its strength being transferred to a bound excitation in the mid-infrared, while the narrow Drude component shows no anomalies at either of the transitions, actually increasing in strength at low temperature while narrowing dramatically. The behavior of an infrared-active mode suggests zone-folding below $T_r$. Below $T_c$ the dramatic decrease in the low-frequency optical conductivity signals the formation of a SC energy gap. ARPES reveals hole-like bands at the center of the Brillouin zone (BZ), with both electron- and hole-like bands at the corners. Below $T_{rm N}$, the hole pockets at the center of the BZ decrease in size, consistent with the behavior of the broad Drude component; while below $T_r$ the electron-like bands shift and split, giving rise to a low-energy excitation in the optical conductivity at ~20 meV. The magnetic states, with resulting SDW and charge-SDW order, respectively, lead to a significant reconstruction of the Fermi surface that has profound implications for the transport originating from the electron and hole pockets, but appears to have relatively little impact on the SC in this material.
Transport signatures of exchange gap opening because of magnetic proximity effect (MPE) are reported for bilayer structures of Bi2Se3 thin films on yttrium iron garnet (YIG) and thulium iron garnet (TmIG) of perpendicular magnetic anisotropy (PMA). P ronounced negative magnetoresistance (MR) was detected, and attributed to an emergent weak localization (WL) effect superimposing on a weak antilocalization (WAL). Thickness-dependent study shows that the WL originates from the time-reversal-symmetry breaking of topological surface states by interfacial exchange coupling. The weight of WL declined when the interfacial magnetization was aligned toward the in-plane direction, which is understood as the effect of tuning the exchange gap size by varying the perpendicular magnetization component. Importantly, magnetotransport study revealed anomalous Hall effect (AHE) of square loops and anisotropic magnetoresistance (AMR) characteristic, typifying a ferromagnetic conductor in Bi2Se3/TmIG, and the presence of an interfacial ferromagnetism driven by MPE. Coexistence of MPE-induced ferromagnetism and the finite exchange gap provides an opportunity of realizing zero magnetic-field dissipation-less transport in topological insulator/ferromagnetic insulator heterostructures.
78 - R. Yang , T. Naito , S. Bai 2018
In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly u nderstand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrates the influence of the beam-gas scattering process on the transverse halo distribution.
We present new low-frequency observations of the nearby radio galaxy Fornax A at 154 MHz with the Murchison Widefield Array, microwave flux-density measurements obtained from WMAP and Planck data, and gamma-ray flux densities obtained from Fermi data . We also compile a comprehensive list of previously published images and flux-density measurements at radio, microwave and X-ray energies. A detailed analysis of the spectrum of Fornax A between 154 MHz and 1510 MHz reveals that both radio lobes have a similar spatially-averaged spectral index, and that there exists a steep-spectrum bridge of diffuse emission between the lobes. Taking the spectral index of both lobes to be the same, we model the spectral energy distribution of Fornax A across an energy range spanning eighteen orders of magnitude, to investigate the origin of the X-ray and gamma-ray emission. A standard leptonic model for the production of both the X-rays and gamma-rays by inverse-Compton scattering does not fit the multi-wavelength observations. Our results best support a scenario where the X-rays are produced by inverse-Compton scattering and the gamma-rays are produced primarily by hadronic processes confined to the filamentary structures of the Fornax A lobes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا