ترغب بنشر مسار تعليمي؟ اضغط هنا

The crystal growth procedure and luminescence properties of pure and Eu$^{2+}$-doped BaBrI and SrBrI crystals are reported. Emission and excitation spectra were recorded under ultraviolet and vacuum ultraviolet excitations. The energy of the first Eu $^{2+}$ 4f-5d transition and SrBrI band gap are obtained. The electronic structure calculations were performed within GW approximation as implemented in the Vienna Ab Initio Simulation Package. The energy between lowest Eu$^{2+}$ 5d state and the bottom of conduction band are found based on luminescence quenching parameters. The vacuum referred binding energy diagram of lanthanide levels was constructed using the chemical shift model.
A highly sensitive refractive index sensor based on grating-assisted strip waveguide directional coupler is proposed. The sensor is designed using two coupled asymmetric strip waveguides with a top-loaded grating structure in one of the waveguides. M aximum light couples from one waveguide to the other at the resonance wavelength, and the change in resonance wavelength with the change in refractive index of the medium in the cover region is a measure of the sensitivity. The proposed sensor would be an on-chip device with a high refractive index sensitivity of ~ 104 nm/RIU, and negligible temperature sensitivity (< 1nm/0C). The sensor configuration offers a low propagation loss, thereby enhancing the sensitivity. Variation of the sensitivity with the waveguide parameters of the proposed sensor have been studied to optimize the design.
The work is necessitated by search for new materials to detect ionizing radiation. The rare-earth ions doped with ternary alkali earth-halide systems are promising scintillators showing high efficiency and energy resolution. Some aspects of crystal g rowth and data on the structural and luminescence properties of BaBrI and BaClI doped with low concentrations of $mathrm{Eu^{2+}}$ ions are reported. The crystals are grown by the vertical Bridgman method in sealed quartz ampoule. New crystallography data for BaClI single crystal obtained by single crystal X-ray diffraction method are presented in this paper. Emission, excitation and optical absorption spectra as well as luminescence decay kinetics are studied under excitation by X-ray, vacuum ultraviolet and ultraviolet radiation. The energies of the first 4f-5d transition in $mathrm{Eu^{2+}}$ and band gap of the crystals have been obtained. We have calculated the electronic band structure of the crystals using density functional theory as implemented in the latin{Ab Initio}. Calculated band gap energies are in accord with the experimental estimates. The energy of gaps between the occupied Eu$^{2+}$ 4f level and the valence band top are predicted. In addition, positions of lanthanide energy levels in relation to valence band have been constructed using the chemical shift model.
We have studied the absorption spectra of x-ray irradiation-induced Ce2+ and Pr2+ ions in crystals of alkaline-earth fluorides. We have calculated absorption spectra of divalent praseodymium ions in SrF2 crystals doped with Pr2+ for the first time. T he calculated spectra agree rather well with the experimental data. In crystals containing induced Ce2+ ions we have found strong electron-phonon coupling. In BaF2, we do not observe bands corresponded to divalent Ce or Pr ions.
75 - Huichao Li , L. Sheng , R. Shen 2013
The quantum spin Hall (QSH) effect is known to be unstable to perturbations violating time-reversal symmetry. We show that creating a narrow ferromagnetic (FM) region near the edge of a QSH sample can push one of the counterpropagating edge states to the inner boundary of the FM region, and leave the other at the outer boundary, without changing their spin polarizations and propagation directions. Since the two edge states are spatially separated into different lanes, the QSH effect becomes robust against symmetry-breaking perturbations.
403 - R. Shendrik , E. A. Radzhabov , 2012
In this paper results of scintillation properties measurements of pure and Ce3+-doped strontium fluoride crystals are presented. We measure light output, scintillation decay time profile and temperature stability of light output. X-ray excited lumine scence outputs corrected for spectral response of monochromator and photomultiplier for pure SrF2 and SrF2-0.3 mol.% Ce3+ are approximately 95% and 115% of NaI-Tl emission output, respectively. A photopeak with a 10% full width at half maximum is observed at approximately 84% the light output of a NaI-Tl crystal after correction for spectral response of photomultiplier, when sample 10x10 mm of pure SrF2 crystal is excited with 662 KeV photons. Corrected light output of SrF2-0.3 mol.% Ce3+ under 662 KeV photon excitation is found at approximately 64% the light output of the NaI-Tl crystal.
236 - R. Ma , L. Sheng , R. Shen 2009
We numerically study the quantum Hall effect (QHE) in bilayer graphene based on tight-binding model in the presence of disorder. Two distinct QHE regimes are identified in the full energy band separated by a critical region with non-quantized Hall Ef fect. The Hall conductivity around the band center (Dirac point) shows an anomalous quantization proportional to the valley degeneracy, but the $ u=0$ plateau is markedly absent, which is in agreement with experimental observation. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center and higher plateaus disappear first. The central two plateaus around the band center are most robust against disorder scattering, which is separated by a small critical region in between near the Dirac point. The longitudinal conductance around the Dirac point is shown to be nearly a constant in a range of disorder strength, till the last two QHE plateaus completely collapse.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا