ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin liquids are quantum phases of matter that exhibit a variety of novel features associated with their topological character. These include various forms of fractionalization - elementary excitations that behave as fractions of an electron. While t here is not yet entirely convincing experimental evidence that any particular material has a spin liquid ground state, in the past few years, increasing evidence has accumulated for a number of materials suggesting that they have characteristics strongly reminiscent of those expected for a quantum spin liquid.
In a ferromagnet, the spin excitations are the well-studied magnons. In frustrated quantum magnets, long-range magnetic order fails to develop despite a large exchange coupling between the spins. In contrast to the magnons in conventional magnets, th eir spin excitations are poorly understood. Are they itinerant or localized? Here we show that the thermal Hall conductivity $kappa_{xy}$ provides a powerful probe of spin excitations in the quantum spin ice pyrochlore Tb$_2$Ti$_2$O$_7$. The thermal Hall response is large even though the material is transparent. The Hall response arises from spin excitations with specific characteristics that distinguish them from magnons. At low temperature ($T<$ 1 K), the thermal conductivity imitates that of a dirty metal. Using the Hall angle, we construct a phase diagram showing how the excitations are suppressed by a magnetic field.
The title compounds have dominant ferromagnetic (FM) exchange interactions within one-dimensional (1D) half-twist ladders of s =1/2 Cu2^{+} ions and antiferromagnetic(AFM) interactions between ladders, leading to ordered 3D phases at temperatures bel ow 20K. Here we show that a microscopic 1D model of the paramagnetic (PM) phase combined with a phenomenological model based on sublattice magnetization describes the observed temperature and field dependent magnetism. The model identifies AFM, spin-flop (SF) and PM phases whose boundaries have sharp features in the experimental magnetization M(T,H) and specific heat CP(T,H). Exact diagonalization (ED) of the 1D model, possible for 24 spins due to special structural features of half-twist ladders, yields the magnetization and spin susceptibility of the PM phase. AFM interactions between ladders are included at the mean-field level using the field, HAF, obtained from modeling the ordered phases. Isotropic exchange J1 = -135K and g-tensor g = 2.1 within ladders, plus exchange and anisotropy fields HAF and HA, describe the ordered phases, and are almost quantitative for the PM phase.
The intermetallic perovskite MgCNi3 is a superconductor with a Tc=7 K. Substitution of Fe and Ru for Ni decreases Tc monotonically as the doping concentration is increased. Here we report thermopower measurements, S(T), on MgCNi3, MgCNi3-xFex and MgC Ni3-xRux. For MgCNi3, the thermopower is negative, - 12.5 mikroV/K, at 300 K. The absolute value of S decreases as x increases in MgCNi3-xFex and MgCNi3-xRux. The sign of S changes from negative to positive at low temperatures for values of x > 0.01. These data show that the carriers in MgCNi3 are electrons, and by increasing x and decreasing temperature, the participation of hole carriers clearly increases. The influence of the magnetic moments of the Fe atoms on the thermopower is not visible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا