ترغب بنشر مسار تعليمي؟ اضغط هنا

Using high magnetic fields up to 60 T, we report magneto-transport and photoluminescence (PL) studies of a two-dimensional electron gas (2DEG) in a GaN/AlGaN heterojunction grown by molecular-beam epitaxy. Transport measurements demonstrate that the quantum limit can be exceeded (Landau level filling factor $ u < 1$), and show evidence for the $ u =2/3$ fractional quantum Hall state. Simultaneous optical and transport measurements reveal synchronous quantum oscillations of both the PL intensity and longitudinal resistivity in the integer quantum Hall regime. PL spectra directly reveal the dispersion of occupied Landau levels in the 2DEG and therefore the electron mass. These results demonstrate the utility of high (pulsed) magnetic fields for detailed measurements of quantum phenomena in high-density 2DEGs.
The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the mu lti-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high resolution measurements on the structurally simpler cuprate HgBa2CuO4+d (Hg1201), which features one CuO2 plane per unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunneling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modeling of these results indicates that biaxial charge-density-wave within each CuO2 plane is responsible for the reconstruction, and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy.
The resistance of a metal in a magnetic field can be very illuminating about its ground state. Some famous examples include the integer and fractional quantum Hall effectscite{Klitzing-QHE,Tsui-FQHE}, Shubnikov-de Haas oscillationscite{SdH}, and weak localizationcite{Lee-WL} emph{et al}. In non-interacting metals the resistance typically increases upon the application of a magnetic fieldcite{Pippard-MR}. In contrast, in some special circumstances metals, with anisotropic Fermi surfacescite{Kikugawa-PdCoO2LMR} or a so-called Weyl semimetal for instancecite{Nielsen-ABJ,Son-ChirAnom}, may have negative magnetoresistance. Here we show that semimetallic TaAs$_2$ possesses a gigantic negative magnetoresistance ($-$98% in a field of 3 T at low temperatures), with an unknown mechanism. Density functional calculations illustrate that TaAs$_2$ is a new topological semimetal [$mathbb{Z}_2$ invariant (0;111)] without a Dirac dispersion. This demonstrates that the presence of negative magnetoresistance in non-magnetic semimetals cannot be uniquely attributed to the Adler-Bell-Jackiw anomaly of bulk Dirac/Weyl fermions. Our results also imply that the OsGe$_2$-type monoclinic dipnictides are likely a material basis where unconventional topological semimetals may be found.
Half a century ago, Mott noted that tuning the carrier density of a semimetal towards zero produces an insulating state in which electrons and holes form bound pairs. It was later argued that such pairing persists even if a semiconducting gap opens i n the underlying band structure, giving rise to what has become known as the strong coupling limit of an `excitonic insulator. While these `weak and `strong coupling extremes were subsequently proposed to be manifestations of the same excitonic state of electronic matter, the predicted continuity of such a phase across a band gap opening has not been realized experimentally in any material. Here we show the quantum limit of graphite, by way of temperature and angle-resolved magnetoresistance measurements, to host such an excitonic insulator phase that evolves continuously between the weak and strong coupling limits. We find that the maximum transition temperature T_EI of the excitonic phase is coincident with a band gap opening in the underlying electronic structure at B_0= 46 +/- 1 T, which is evidenced above T_EI by a thermally broadened inflection point in the magnetoresistance. The overall asymmetry of the observed phase boundary around B_0 closely matches theoretical predictions of a magnetic field-tuned excitonic insulator phase in which the opening of a band gap marks a crossover from predominantly momentum-space pairing to real-space pairing.
Some of the most remarkable phenomena---and greatest theoretical challenges---in condensed matter physics arise when $d$ or $f$ electrons are neither fully localized around their host nuclei, nor fully itinerant. This localized/itinerant duality unde rlies the correlated electronic states of the high-$T_c$ cuprate superconductors and the heavy-fermion intermetallics, and is nowhere more apparent than in the $5f$ valence electrons of plutonium. Here we report the full set of symmetry-resolved elastic moduli of $PuCoGa_5$---the highest $T_c$ superconductor of the heavy fermions ($T_c$=18.5 K)---and find that the bulk modulus softens anomalously over a wide range in temperature above $T_c$. Because the bulk modulus is known to couple strongly to the valence state, we propose that plutonium valence fluctuations drive this elastic softening. This elastic softening is observed to disappear when the superconducting gap opens at $T_c$, suggesting that plutonium valence fluctuations have a strong footprint on the Fermi surface, and that $PuCoGa_5$ avoids a valence-transition by entering the superconducting state. These measurements provide direct evidence of a valence instability in a plutonium compound, and suggest that the unusually high-$T_c$ in this system is driven by valence fluctuations.
We report magneto-transport studies of topological insulator Bi_{2}Te_{3} thin films grown by pulsed laser deposition. A non-saturating linear-like magneto-resistance (MR) is observed at low temperatures in the magnetic field range from a few Tesla u p to 60 Tesla. We demonstrate that the strong linear-like MR at high field can be well understood as the weak antilocalization phenomena described by Hikami-Larkin-Nagaoka theory. Our analysis suggests that in our system, a topological insulator, the elastic scattering time can be longer than the spin-orbit scattering time. We briefly discuss our results in the context of Dirac Fermion physics and quantum linear magnetoresistance.
A finite transfer integral $t_a$ orthogonal to the conducting chains of a highly one-dimensional metal gives rise to empty and filled bands that simulate an indirect-gap semiconductor upon formation of a commensurate charge-density-wave (CDW). In con trast to semiconductors such as Ge and Si with bandgaps $sim 1$ eV, the CDW system possesses an indirect gap with a greatly reduced energy scale, enabling moderate laboratory magnetic fields to have a major effect. The consequent variation of the thermodynamic gap with magnetic field due to Zeeman splitting and Landau quantization enables the electronic bandstructure parameters (transfer integrals, Fermi velocity) to be determined accurately. These parameters reveal the orbital quantization limit to be reached at $sim 20$ T in (Per)$_2M$(mnt)$_2$ salts, making them highly unlikely candidates for a recently-proposed cascade of field-induced charge-density wave states.
Graf {it et al.} [Phys. Rev. Lett. {bf 93} 076406 (2004)] recently attributed features in the magnetic-field-dependent longitudinal resistance of (Per)$_2$Pt(mnt)$_2$ to a cascade of field-induced charge-density waves (FICDWs). Here we show that a qu antitative magnetotransport analysis reveals orbital quantization to be absent, disproving the presence of FICDWs. Our data show that the conduction is instead dominated by the sliding CDW collective mode at low temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا