ترغب بنشر مسار تعليمي؟ اضغط هنا

119 - J.L. Nagle , R. Belmont , S.H. Lim 2021
Recently the PHENIX Collaboration has made available two-particle correlation Fourier coefficients for multiple detector combinations in minimum bias p+p and 0-5% central p+Au, d+Au, 3He+Au collisions at 200 GeV [1]. Using these coefficients for thre e sets of two-particle correlations, azimuthal anisotropy coefficients $v_2$ and $v_3$ are extracted for midrapidity charged hadrons as a function of transverse momentum. In this paper, we use the available coefficients to explore various non-flow hypotheses as well as compare the results with theoretical model calculations. The non-flow methods fail basic closure tests with AMPT and PYTHIA/ANGANTYR, particularly when including correlations with particles in the low multiplicity light-projectile going direction. In data, the non-flow adjusted $v_2$ results are modestly lower in p+Au and the adjusted $v_3$ results are more significantly higher in p+Au and d+Au. However, the resulting higher values for the ratio $v_3/v_2$ in p+Au at RHIC compared to p+Pb at the LHC is additional evidence for a significant over-correction. Incorporating these additional checks, the conclusion that these flow coefficients are dominated by initial geometry coupled with final-state interactions (e.g.~hydrodynamic expansion of quark-gluon plasma) remains true, and explanations based on initial-state glasma are ruled out. The detailed balance between intrinsic and fluctuation-driven geometry and the exact role of weakly versus strongly-coupled pre-hydrodynamic evolution remains an open question for triangular flow, requiring further theoretical and experimental investigation.
sPHENIX is a new experiment under construction for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory which will study the quark-gluon plasma to further the understanding of QCD matter and interactions. A prototype of the sPHENIX e lectromagnetic calorimeter (EMCal) was tested at the Fermilab Test Beam Facility in Spring 2018 as experiment T-1044. The EMCal prototype corresponds to a solid angle of $ Delta eta times Delta phi = 0.2 times 0.2$ centered at pseudo-rapidity $eta = 1$. The prototype consists of scintillating fibers embedded in a mix of tungsten powder and epoxy. The fibers project back approximately to the center of the sPHENIX detector, giving 2D projectivity. The energy response of the EMCal prototype was studied as a function of position and input energy. The energy resolution of the EMCal prototype was obtained after applying a position dependent energy correction and a beam profile correction. Two separate position dependent corrections were considered. The EMCal energy resolution was found to be $sigma(E)/langle Erangle = 3.5(0.1) oplus 13.3(0.2)/sqrt{E}$ based on the hodoscope position dependent correction, and $sigma(E)/langle Erangle = 3.0(0.1) oplus 15.4(0.3)/sqrt{E}$ based on the cluster position dependent correction. These energy resolution results meet the requirements of the sPHENIX physics program.
91 - J.L. Nagle , R. Belmont , K. Hill 2017
Signatures of collective behavior have been measured in highly relativistic p+p collisions, as well as in p+A, d+A, and 3He+A collisions. Numerous particle correlation measurements in these systems have been successfully described by calculations bas ed on viscous hydrodynamic and transport models. These observations raise the question of the minimum necessary conditions for a system to exhibit collectivity. Recently, numerous scientists have raised the question of whether the quarks and gluons generated in e+e- collisions may satisfy these minimum conditions. In this paper we explore possible signatures of collectivity, or lack thereof, in e+e- collisions utilizing A Multi-Phase Transport (AMPT) framework which comprises melted color strings, parton scattering, hadronization, and hadron re-scattering.
The corona, a hot cloud of electrons close to the centre of the accretion disc, produces the hard X-ray power-law continuum commonly seen in luminous Active Galactic Nuclei (AGN). The continuum has a high-energy turnover, typically in the range of on e to several 100 keV and is suggestive of Comptonization by thermal electrons. We are studying hard X-ray spectra of AGN obtained with NuSTAR after correction for X-ray reflection and under the assumption that coronae are compact, being only a few gravitational radii in size as indicated by reflection and reverberation modelling. Compact coronae raise the possibility that the temperature is limited and indeed controlled by electron-positron pair production, as explored earlier (Paper I). Here we examine hybrid plasmas in which a mixture of thermal and nonthermal particles is present. Pair production from the nonthermal component reduces the temperature leading to a wider temperature range more consistent with observations.
TeV photons from extragalactic sources are absorbed in the intergalactic medium and initiate electromagnetic cascades. These cascades offer a unique tool to probe the properties of the universe at cosmological scales. We present a new Monte Carlo cod e dedicated to the physics of such cascades. This code has been tested against both published results and analytical approximations, and is made publicly available. Using this numerical tool, we investigate the main cascade properties (spectrum, halo extension, time delays), and study in detail their dependence on the physical parameters (extra-galactic magnetic field, extra-galactic background light, source redshift, source spectrum and beaming emission). The limitations of analytical solutions are emphasised. In particular, analytical approximations account only for the first generation of photons and higher branches of the cascade tree are neglected.
In the past years, several observations of AGN and X-ray binaries have suggested the existence of a warm T around 0.5-1 keV and optically thick, tau ~ 10-20, corona covering the inner parts of the accretion disk. These properties are directly derived from spectral fitting in UV to soft-X-rays using Comptonization models. However, whether such a medium can be both in radiative and hydrostatic equilibrium with an accretion disk is still uncertain. We investigate the properties of such warm, optically thick coronae and put constraints on their existence. We solve the radiative transfer equation for grey atmosphere analytically in a pure scattering medium, including local dissipation as an additional heating term in the warm corona. The temperature profile of the warm corona is calculated assuming it is cooled by Compton scattering, with the underlying dissipative disk providing photons to the corona. Our analytic calculations show that a dissipative thick, (tau_{cor} ~ 10-12) corona on the top of a standard accretion disk can reach temperatures of the order of 0.5-1 keV in its upper layers provided that the disk is passive. But, in absence of strong magnetic fields, the requirement of a Compton cooled corona in hydrostatic equilibrium in the vertical direction sets an upper limit on the Thomson optical depth tau_{cor} < 5 . We show this value cannot be exceeded independently of the accretion disk parameters. However, magnetic pressure can extend this result to larger optical depths. Namely, a dissipative corona might have an optical depth up to ~ 20 when the magnetic pressure is 100 times higher that the gas pressure. The observation of warm coronae with Thomson depth larger than ~ 5 puts tights constraints on the physics of the accretion disk/corona systems and requires either strong magnetic fields or vertical outflows to stabilize the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا