ترغب بنشر مسار تعليمي؟ اضغط هنا

115 - R. Palai , J.F. Scott , 2010
We report a Raman scattering investigation of multiferroic bismuth ferrite BiFeO3 epitaxial (c-axis oriented) thin films from -192 to 1000C. Phonon anomalies have been observed in three temperature regions: in the gamma-phase from 930C to 950C; at ~3 70C, Neel temperature (TN), and at ~123C, due to a phase transition of unknown type (magnetic or structural). An attempt has been made to understand the origin of the weak phonon-magnon coupling and the dynamics of the phase sequence. The disappearance of several Raman modes at ~820C (Tc) is compatible with the known structural phase transition and the Pbnm orthoferrite space group assigned by Arnold {it et al.} cite{arnold:09}. The spectra also revealed a {it non-cubic} $beta$-phase from 820-930dc and the same {it non-cubic} phase extends through the $gamma$-phase between 930-950dc, in agreement with Arnold {it et al.} cite{arnold2:09}, and an evidence of a cubic $delta$-phase around 1000dc in thin films that is not stable in powder and bulk. Such a cubic phase has been theoretically predicted in cite{vasquez:prb09}. Micro-Raman scattering and X-ray diffraction showed no structural decomposition in thin films during the thermal cycling from 22-1000dc.
We report the observation of spin-glass-like behavior and strong magnetic anisotropy in extremely smooth (~1-3 AA) roughness) epitaxial (110) and (010) SrRuO3 thin films. The easy axis of magnetization is always perpendicular to the plane of the film (unidirectional) irrespective of crystallographic orientation. An attempt has been made to understand the nature and origin of spin-glass behavior, which fits well with Heisenberg model.
We show that epitaxial (001) thin films of multiferroic bismuth ferrite BiFeO3 are monoclinic at room temperature instead of tetragonal or Rhombohedral as reported earlier . We report a orthorhombic order-disorder beta-phase between 820C and 950C con trary to the earlier report. The transition sequence monoclinic-orthorhombic phase in (001)BiFeO3 thin film (rhombohedral-orthorhombic transition in single crystal) resembles that of BaTiO3 or PbSc1/2Ta1/2O3. The transition to the cubic $gamma$-phase causes an abrupt collapse of the bandgap toward zero (insulator-metal transition) at the orthorhombic-cubic beta-gamma transition around 950C. This transition is similar to the metal-insulator transition in Ba0.6K0.4BiO3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا