ترغب بنشر مسار تعليمي؟ اضغط هنا

Riemannian geometry has been applied to Brain Computer Interface (BCI) for brain signals classification yielding promising results. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows a mitigation of common sources of variability (electronic, electrical, biological) by constructing a representation which is invariant to these perturbations. While working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in information geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. This paper proposes a comprehensive review of the actual tools of information geometry and how they could be applied on covariance matrices of EEG. In practice, covariance matrices should be estimated, thus a thorough study of all estimators is conducted on real EEG dataset. As a main contribution, this paper proposes an online implementation of a classifier in the Riemannian space and its subsequent assessment in Steady-State Visually Evoked Potential (SSVEP) experimentations.
Overcomplete representations and dictionary learning algorithms kept attracting a growing interest in the machine learning community. This paper addresses the emerging problem of comparing multivariate overcomplete representations. Despite a recurren t need to rely on a distance for learning or assessing multivariate overcomplete representations, no metrics in their underlying spaces have yet been proposed. Henceforth we propose to study overcomplete representations from the perspective of frame theory and matrix manifolds. We consider distances between multivariate dictionaries as distances between their spans which reveal to be elements of a Grassmannian manifold. We introduce Wasserstein-like set-metrics defined on Grassmannian spaces and study their properties both theoretically and numerically. Indeed a deep experimental study based on tailored synthetic datasetsand real EEG signals for Brain-Computer Interfaces (BCI) have been conducted. In particular, the introduced metrics have been embedded in clustering algorithm and applied to BCI Competition IV-2a for dataset quality assessment. Besides, a principled connection is made between three close but still disjoint research fields, namely, Grassmannian packing, dictionary learning and compressed sensing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا